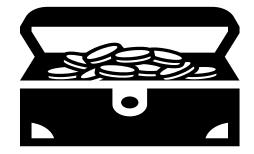
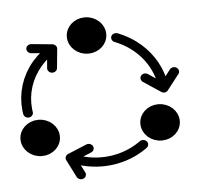
FCA, Commissioning, Recommissioning

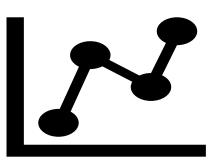
and Retro-Commissioning:

Which One Do I Need and Why?

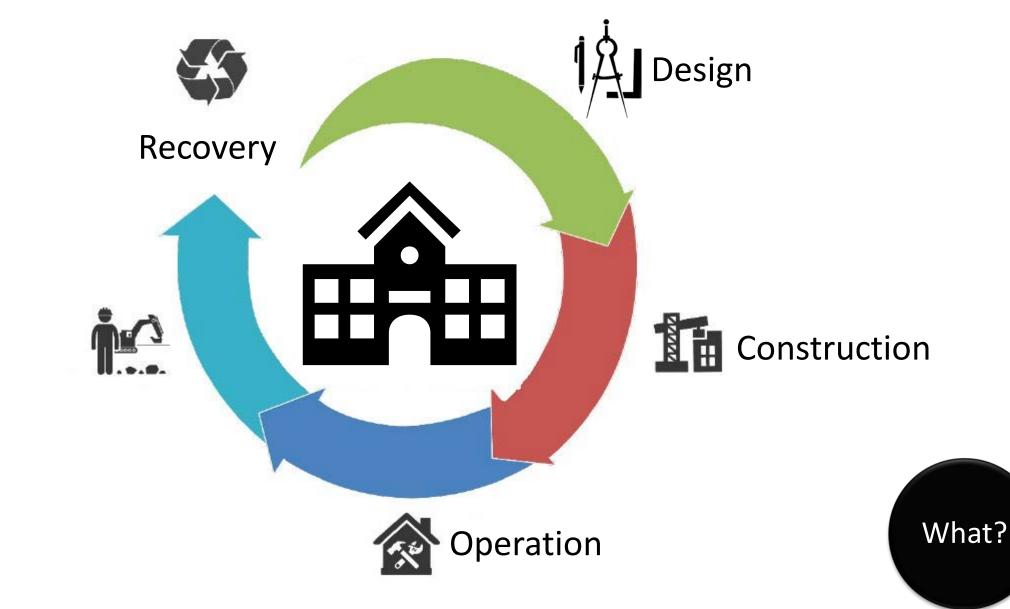
Who am I?






Why am I here?

Bridge the Gap between FCA, Cx & FP Convey the diverse benefits of FCAs & Cx


Share best FCA & Cx application practices

Explore FCA and Cx Data and findings

Big Picture - Facility Lifecycle

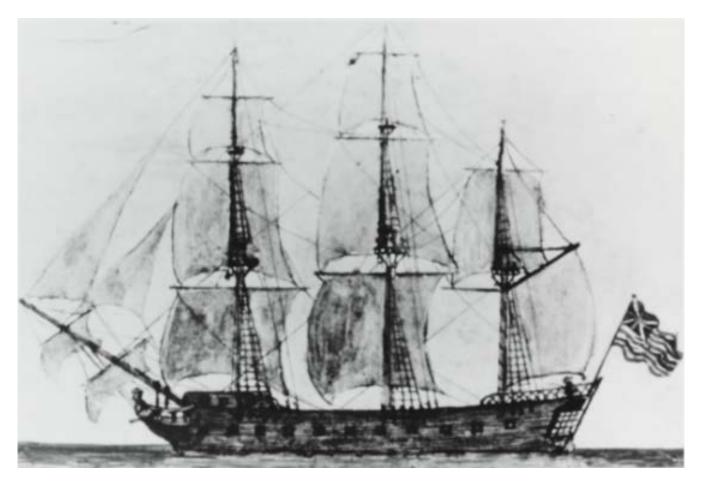
Ē

Cx and FCA Integration

FCA

Сх

When?



Ţ

Cx Origins – Ship Building

History Lesson:

- Before Cx, Captain sailed the harbor
- *Test Drive* approach changed in 1775
- *Alfred*, 1st ship of Continental Navy
- Cx ceremony became a Navy tradition

Ship Cx Attributes:

- "Quality assurance process"
- Installing and testing equipment
- Identifying and correcting problems
- Training the prospective crew

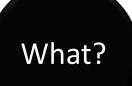
Cx Origins – 200 Years later...

1981

Walt Disney included Commissioning in the Design, Construction and Start Up of the Epcot Centre, Florida

1984

1977


The University of Michigan establishes a Facilities, Evaluation and Commissioning Group

Public Works of Canada adopt Commissioning in

their Project Delivery System

The Commissioning Guideline Committee was formed by ASHRAE

The University of Wisconsin, Madison create Commissioning Courses

1989 First ASHRAE Commissioning Guideline is Issued

Cx Origins – And Here We Are

1998

US Green Building Council adds Commissioning to the LEED Programme

2010

California introduces mandatory Commissioning

requirements for Buildings

1993

First National Conference on Building Commissioning held [NCBC]

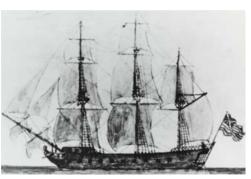
National Environmental Balancing Bureau [NEBB] develop Certification Programme

1999

Building Commissioning Association [BCxA] Established

2017

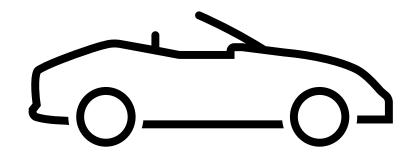
Commissioning required per FBC Section C408, Energy Conservation

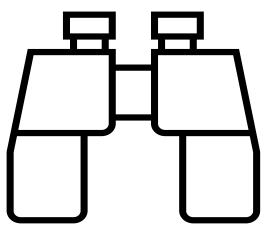


Cx Defined

Per ASHRAE Guideline 0: Commissioning is a quality-focused process for enhancing the delivery of a project. The process focuses on verifying and documenting that the facility and all its systems and assemblies are planned, designed, installed, tested, operated, and maintained to meet the Owner's Project Requirements.

<u>Ship Cx Attributes:</u>


- "Quality assurance process"
- Installing and testing equipment
- Identifying and correcting problems
- Training the prospective crew



Owner

Contractor

"It's like paying someone to test-drive your new car" "It's like a colonoscopy for your building, and they get up there!"

Ē

New Construction Commissioning (NCCx)

COMMUNICATIONS

Common Systems	ASHRAE Phases
H V A C LIGHTING	PRE-DESIGN
ELECTRICAL	DESIGN
SECURITY FIRE ALARM	CONSTRUCTION
AUDIO/VISUAL Building Envelope	Ο C C U P A N C Y

В

What?

NCCx Process Scope Options

	FL Building Code Requirement	LEED (Fundamental / Required)	LEED (Enhanced)	ASHRAE 0	
Review Design, OPR, BOD and Issue Review	-	YES	-	YES	
Prepare Commissioning Plan	YES	YES	-	YES	
Monitor Construction / Equipment Install	YES	YES	-	YES	
Review Testing Reports (e.g TAB)	YES	YES	-	YES	
Prepare Pre-Functional Checklists	YES	YES	~~~	YES	
Perform Functional Performance Testing	YES	YES		YES	
Prepare Preliminary Commissioning Report	YES	YES	÷	YES	
Prepare Final Commissioning Report	YES	YES	-	YES	
Coordinate / Review Oper. & Maint. Manuals	YES	YES	-	YES	
Prepare LEED Documentation	-	YES	YES	-	
Review Contractor Submittals			YES	YES	
Verify Systems Manual Updates and Delivery	YES	-	YES	YES	
Verify Owner and Occupant Training at Occupancy	-	-	YES	YES	
Review Bldg. Operations at 10-month Post- Occupancy		-	YES	YES	
Develop Ongoing Commissioning Plan for Occupancy	(4.)		YES	YES	

What?

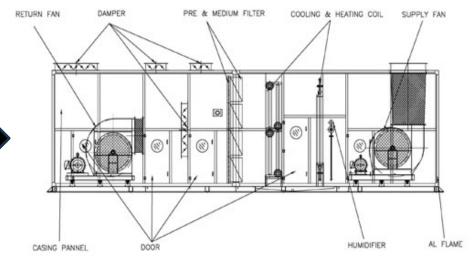
Minimum Cx Scope, per FBC

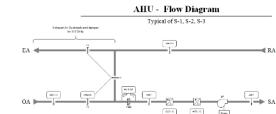
The Florida Building Code (FBC) requires Commissioning of the following systems:

- Mechanical systems
- Electrical power systems
- Lighting systems
- Air distribution systems

Exceptions:

- Mechanical systems less than 40 tons cooling
- Combined water/ space heating under 50 tons




AHU Example

Ē

Air Handling Unit (1 day - economizer) 120 100 -80 Pas a 40 20 0 8.15 10.15 12.15 14.15 16.15 18.15 20.15 22.15 0.15 2.15 4.15 6.15 Date/Time Outside Air Temp Discharge Air Temp Stpt Outside Air Damper Position Return Air Temp Discharge Air Temp Heating Valve Position Mixed Air Temp Cooling Valve Position

TEN	977	2357	26008.271044
The state	2	CELENCIES	LCS3 Calabe
AT .			
DO		NT21712102	Texasilar (many
O-GAL			TICA Menut EX for METTOLASCID
8.7		077704334872	205, Dog Terry Second f
			An Amount Construct
		0740053000	
-4		T-20200-1	John Tapp?/ 122/D4 90/18.
TH			
6-T11		2005-000-001	Data Mount Let Son C'AREADOD
			Industrying Triver DRYT Exists Real
	15	102-00-04A	Appendics Direct 2007 Selan WOrselder
		077 10 030 700 000	CarperCarper
		V264-5000	Transformer For LGPN 1300
		75120	
-7		7240	Sillion Vill Temp Server

K10/6 K10/6 H10/6 Contine Stages on 4 stage uni 8.am

Remote Access

Sequence of Operation

The occupied / unoccupied schedule for the controller is programmed through the TB220 Wall module. The schedule function can breate up to four eventsper day. Each day can be programmed for different schedule.

Modes Useccupied

The unscooped mode heating and cooling temperatur exetpoints a During unoccupied mode, the fan is off, the dampers are closed to outside air, heating commands are off and cooling commands are of

Unoccupied Heating Mode When the space, as sensed by the socie temporature senser, shops to the unoccupied heating temporateric, the fair will start, the data classifies the obtained and the heating will stage up. The unit will stary in the unoccupied heating mode until the space temporature unoccupied heating associety by programmed amount.

Unoccupied Cooling Mode

When the space, as served by the socie tensor twice sensor, itsis to the wrock pills looking temperature, the fain will start, the dampers will start disast to be active and the cooling will stark up. The unit will stary in the uncellupid cooling mode until the space temperature drops below the uncomplete cooling segment by precisionary and any start will stary in the uncellupid cooling mode until the space temperature drops below the uncomplete cooling segment by precisionary and any start will stary in the uncellupid cooling mode until the space temperature drops below the uncomplete cooling segment by precisionary and the uncellupid cooling temperature of the space temperature of temperatur Occupied

The occupied mode heating and cooling temperature setports are configured through the TS120 Wall Module.

During occupied mode, the fan is commanded on continuously, the dampersare will be controlled as described in the economizer section, the heating and cooling will be staged to maintain the heating and cooling septoints as described in the occupied heating and cooling sections.

When the enthalpy of the outside of is lower than the enthalpy of the rotum of them the system will switch to Economizer mode. The outside of enthalpy is calculated from the measured outside of temperature and humidity sensors. The return of enthalpy is calculated from the measured under an elimensation and humidity events.

During the commission mode, heating and costing is locked out and the space temporators is maintained by monitoling of the co-backware minimum problem in 2005, appropriate temporations are intre a minimum position and the space temporator coupped heating appoint on which the cost data or adhibits plating that the tert can all and heat the space temporator. Occupied Heating Mode

When the spectramperature, as monitor of by the spectramperature sensor, shops below the occusion heating setpoint, the system will stage the reating as required to maintain the space temperature. During this mode, the economizer dempers will stag in the minimum position. Occupied Cooling Mode

When the space temperature, a cooling as required to maintain he space temperature sensor, rises above the occupied coolin reture. During this mode, the economizer dampers will stay i Monitoring and Alarms

The system will monitor the following points Fan status if the fan status does not match fan command an aiarm will begenerated. Discharge Test gestuper if the discharge test gestupe does not rise during heating or dog of using cooling mode and sharp will be segregated All parameters, setpoints and alarms can be accessed and are visible via remote access through the illoneywell gatevas

What?

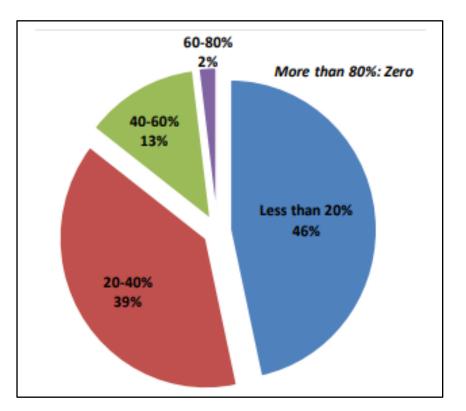


Cx Value & Timing

Increased Value

Lower Initial Cost

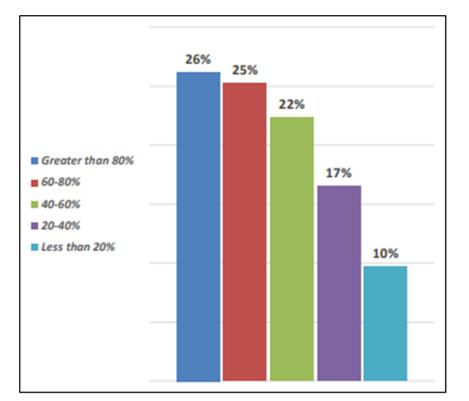
✦



Ę

Cx Value & Timing

*Per BCxA 2018 Market Survey

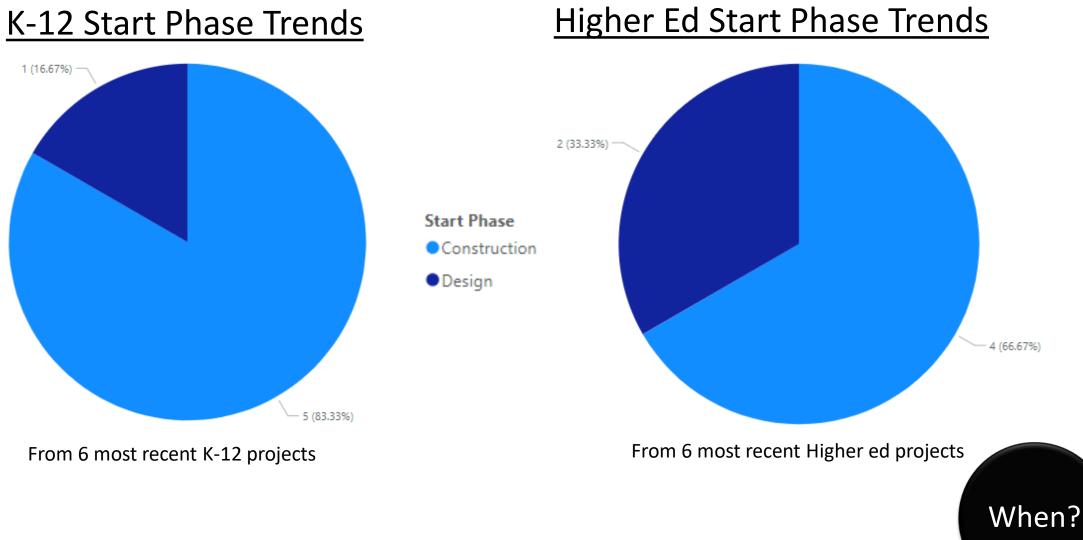

"It's easier to fix things on paper, with a pencil, than in the field, with a power tool."

- 25% of issues are found during Design Phase
- Design phase issues are quickly resolved
- Design phase issues are cheaper to resolve

Cx Best Practice

*Per BCxA 2018 Market Survey

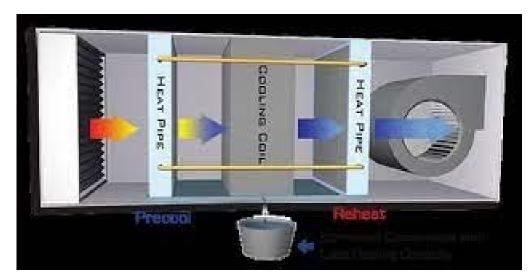
Trends in Commissioning Application

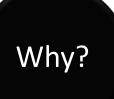

- 26% of clients start Cx at Design Phase 80%+
- 25% of clients start Cx at Design Phase 60%+
- Added fee is nominal vs vale added

Ę

Recent Examples

K-12 Client Cost Avoidance


- Nearly replaced CHW distribution due to age
- Conducted a study with Ultrasonic Testing
- Freed up thousands for reallocation


Brooksville Elementary School – CHW Study

Higher Ed Cost Avoidance

- Discovered mis-sized heat pipe design
- Corrected issue and changed order
- Prevented delays, earned LEED points

UF Historical Hall Heat Pipe sizing

New Construction Commissioning (NCCx)

- Code Compliant Cx
- Fundamental Commissioning
- Enhanced Commissioning

Post-Occupancy Cx Processes

Ongoing (Continuous) Commissioning (OCx):

- Sustain and optimize building performance
- Meet the current facility requirements (CFR)
- 2-year cycle of *continuous* commissioning
- Part of LEED enhanced systems commissioning

Monitoring-Based Commissioning (MBCx):

- Utilizes automated data analytics
- Continuously monitors system performance
- Can be part of an OCx Plan
- Also part of LEED enhanced systems commissioning

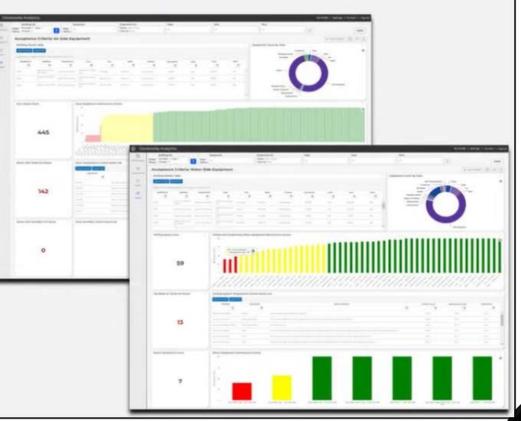
Post-Oc/ Existing Building (EBCx) Cx Processes

Re-Commissioning (Re-Cx):

- Ideal for tuning up a previously Cx'd building
- Restore design intent
- Restore operational efficiency
- Offset "drift" and "Override Joe"

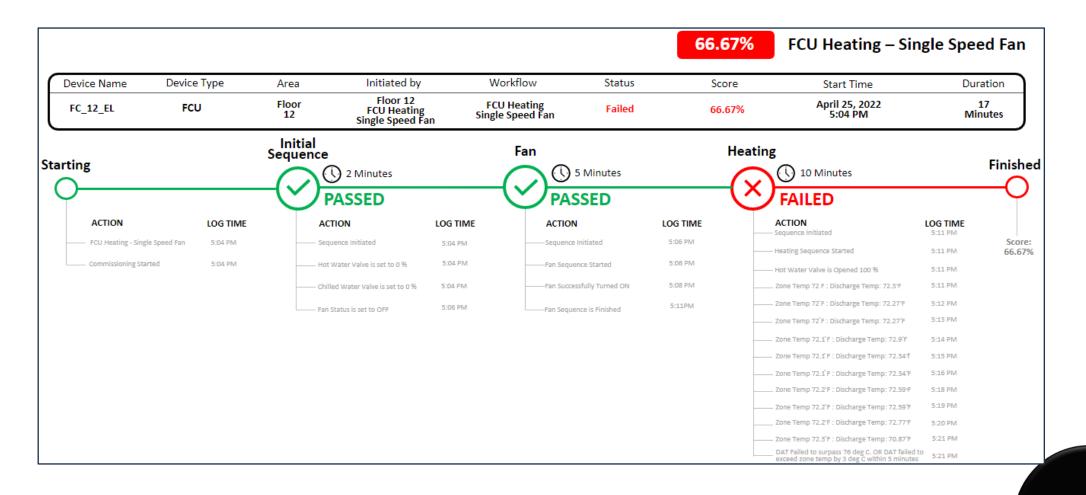
Retro-Commissioning (RCx):

- Ideal for older facilities
- Initial/ after-the-fact Cx effort
- Can inform capital invest
- Good for establishing performance baseline


Cx Acceptance Criteria | Summary

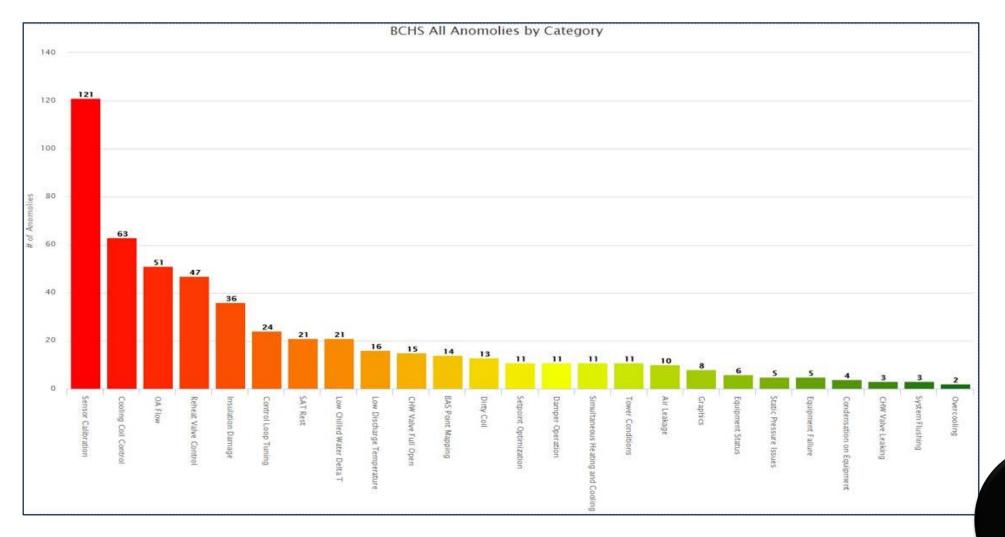
Scope: Cx plans are not considered complete until an approved set of Acceptance Criteria is in place.

Requirements:


- On the EOR's plans or specifications , or
- On a stamped, signed, and dated memo from the EOR to the CxA, and
- 3. In the Commissioning Plan

Goal: Demonstrate the value of the selected design.

What?

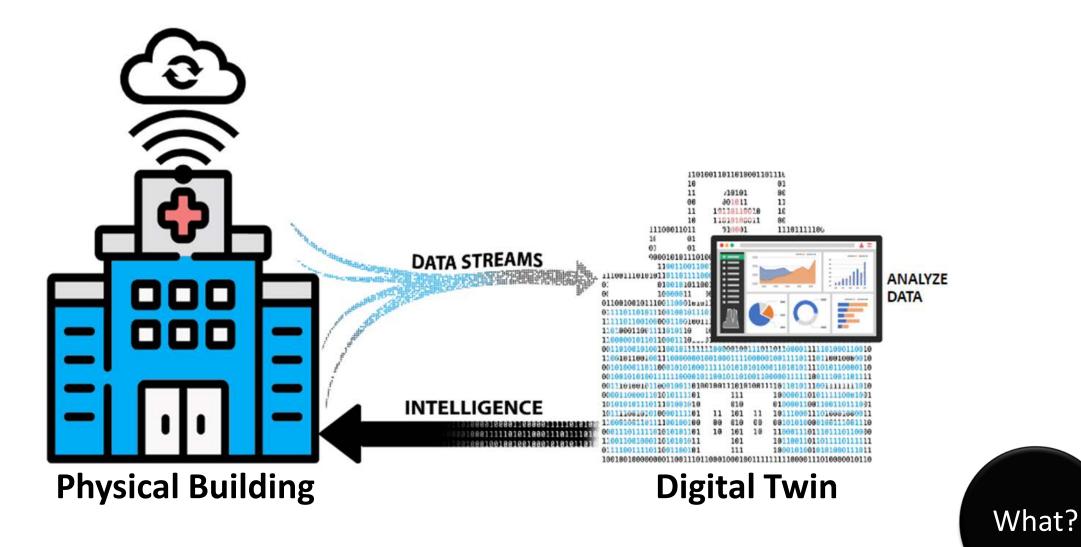


What?

Ę

Ţ

What?


Root Cause ²							
Test Asset • Dischor	rge Air Temp	erature (62°F) is lower	than its setpoint (65°F)				6
• Chille	Test	Parameter		Test Value	Lower Limit	Upp Limi	
		Domper Output	greater than Minimum Operational OAD Control value (0 %)	50	0	100	
		Discharge Temperature Setpoint	Discharge Temperature Setpoint is 65°F	65	42	75	
			Discharge Air Temperature is 62°F				
		Discharge Air Temperature	Discharge Air Temperature (62°F) is lower than its setpoint (65°F)	62	42	96	
Detected Failures		Cooling Output	Cooling Output value(0%) is acceptable. (Not greater than its maximum value(100%))	0	0	100	
		Valve Position	Chilled water valve feedback value (70%) is not around the control value (0%)	70	0	100	
		Discharge Air Press Setpoint	Discharge Air Press Setpoint is 0.7 w.c	0.7	0	2	
			Discharge Air Static Pressure 1 is 1 w.c				
		Discharge Air	Discharge Air Static Proceurs 1 volue (Jure) in				

F

Digital Twin Platforms

What?

Re & Retro Cx Survey

<u>Re-Commissioning (Re-Cx):</u>

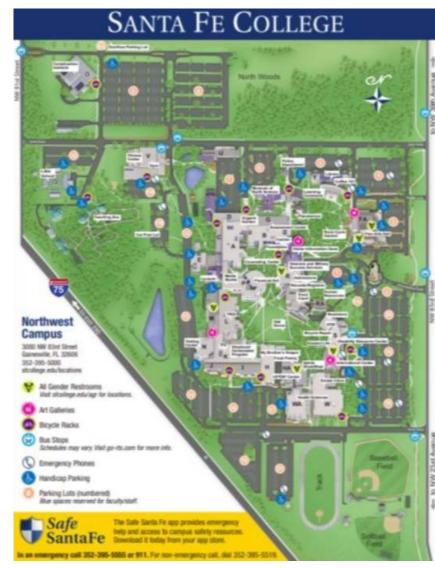
- How many occupy or operate a Cx'd building?
- Have any buildings that were Cx'd over 5 years ago?
- Has operational efficiency dropped?
- Do you employ an "Override Joe"?

Retro-Commissioning (RCx):

- How many occupy or operate older buildings?
- Have they ever been Cx'd?
- Could you use some guidance regarding capital invest?
- Have you ever established performance baseline?

Relevant Data

According to the 2021 America's Infrastructure Report:


- There are 67 School Districts in Florida
- Nearly 3,600 K-12 Schools
- 180,000 permanent classrooms
- Average Building Age is **31** years old

According to Florida Deferred Maintenance Report:

- FL colleges and universities have a DM backlog
- Various repair and replacement projects are needed
- PECO funding won't meet the need
- Average Building Age is 24 years old

iliated

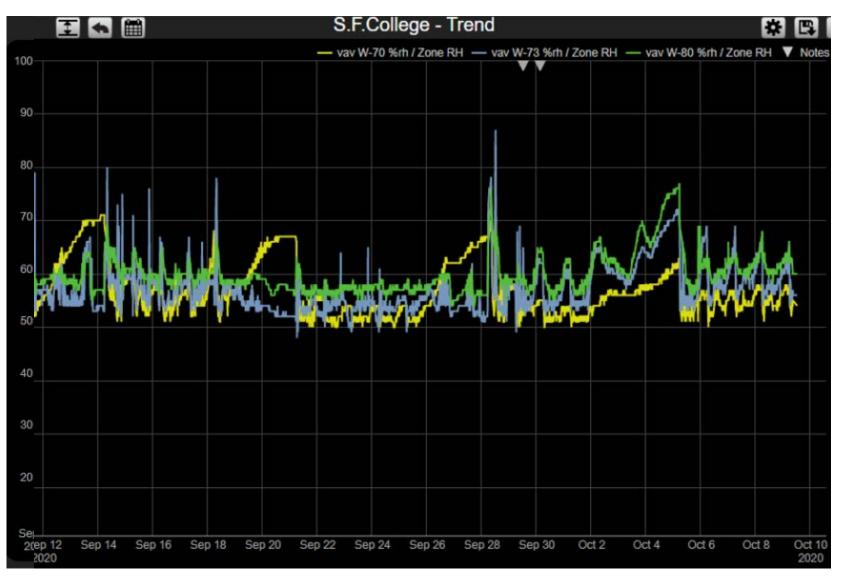
Santa Fe College:

- Mixture of Cx'd and non-Cx'd buildings
- Prioritized older Retro-Cx first
- Re-Cx of newer buildings after
- Focused on one building at a time
- Various use-changes over the years
- Excellent record keeping for reference
- Sought direction and energy savings
- Multiple findings per building

Exhaust Fan North

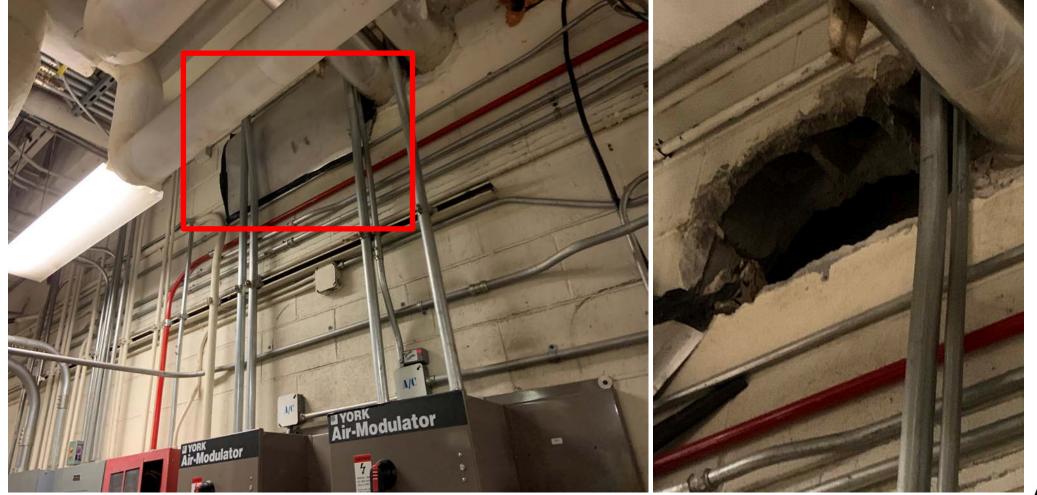
Interlocked with high (Not integrated with BAS.)

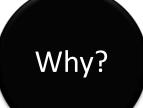
Exhaust Fan South


Interlocked with high and low pressure switches. (Not integrated with BAS.)

F

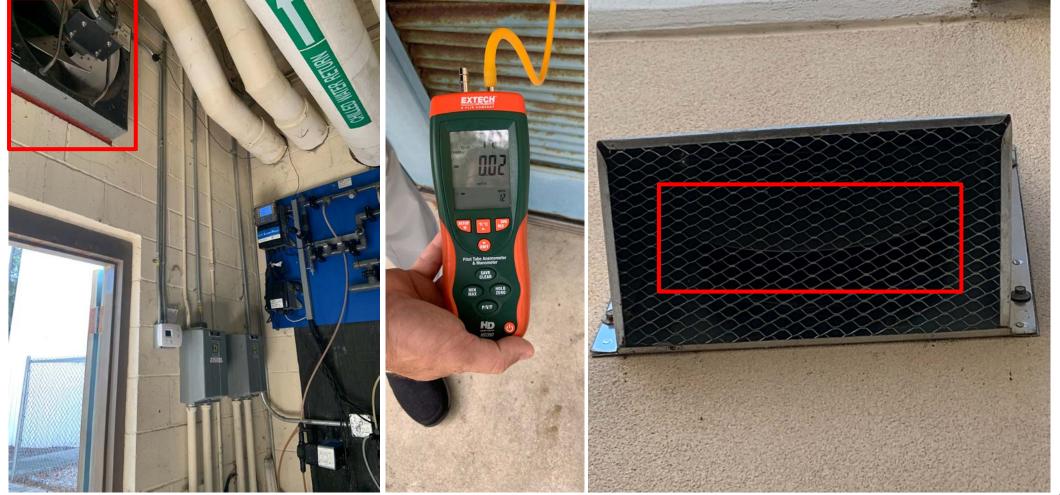
F





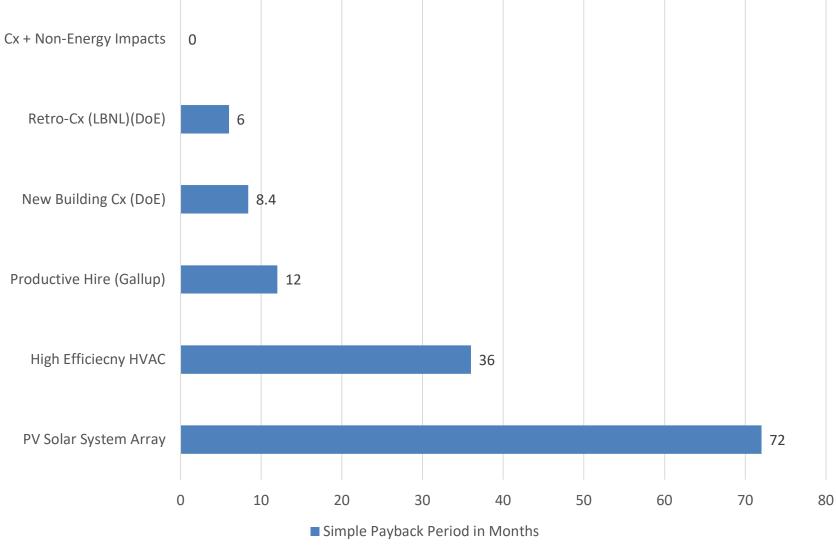
Why?

Ē



Ē

Re & Retro Example



Ē

Simple Payback

Ţ

New Construction Commissioning (NCCx)

- Code Compliant Cx
- Fundamental Commissioning
- Enhanced Commissioning

COMMISSIONING (Cx)

Post Oc/ Existing Building Cx (EBCx)

- Ongoing/ Continuous Commissioning
- Monitoring-based Commissioning
- Re & Retro-commissioning

Facility Condition Assessment (FCA)

FCA Defined

A comprehensive evaluation of a building's physical condition.

The purpose of an FCA is to:

- Identify any existing or potential problems
- Determine if the building is suitable for its intended functions
- Prioritize repairs
- Help determine preventive maintenance, repairs, and upgrades
- Provide recommendations for addressing issues
- Provide financial forecasting, if requested

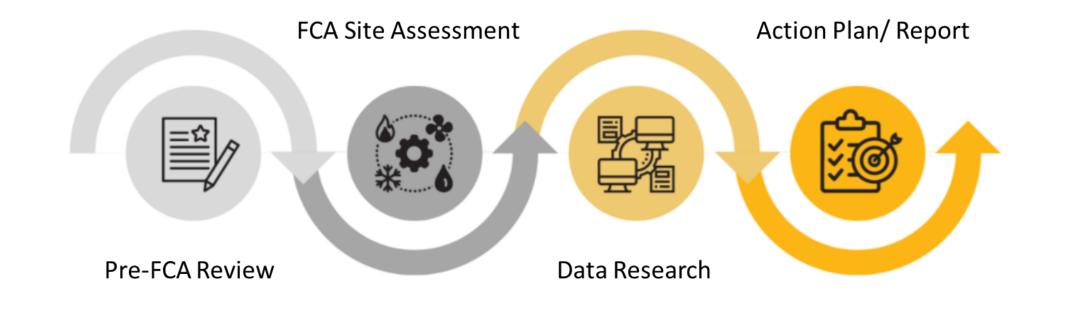
FCA Timing

Ę

When facility is in decline

When repair funds are available

When an extra set of eyes is needed


Following unexpected damages

FCA Process

Ē

What?

FCA Best Practices

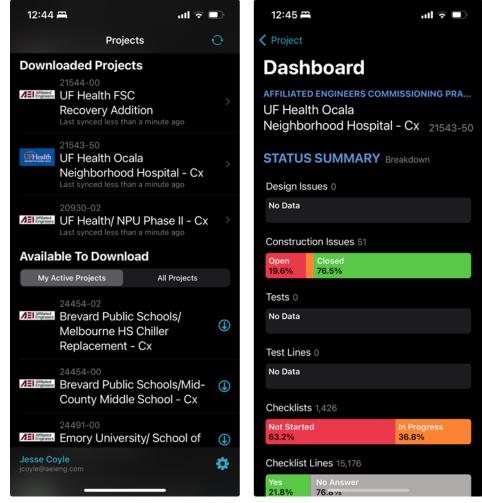
FCA + TAB

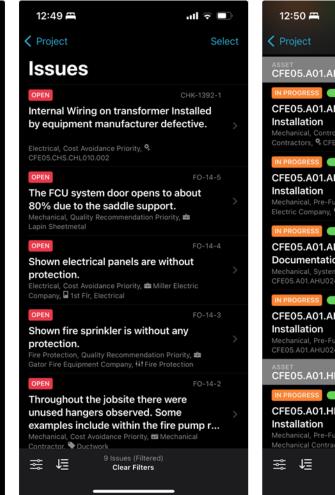
- Great for informing design
- Next best baseline to Retro-Cx
- Quick turn-around time
- Can be easily compiled

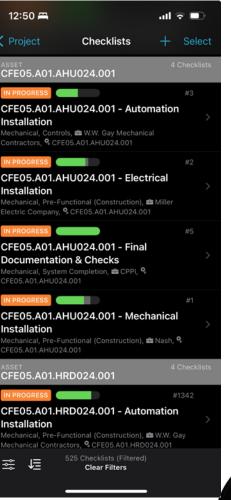
FCA and Cx Process Delivery

Not all FCA and Cx processes are created equal, so look for the following:

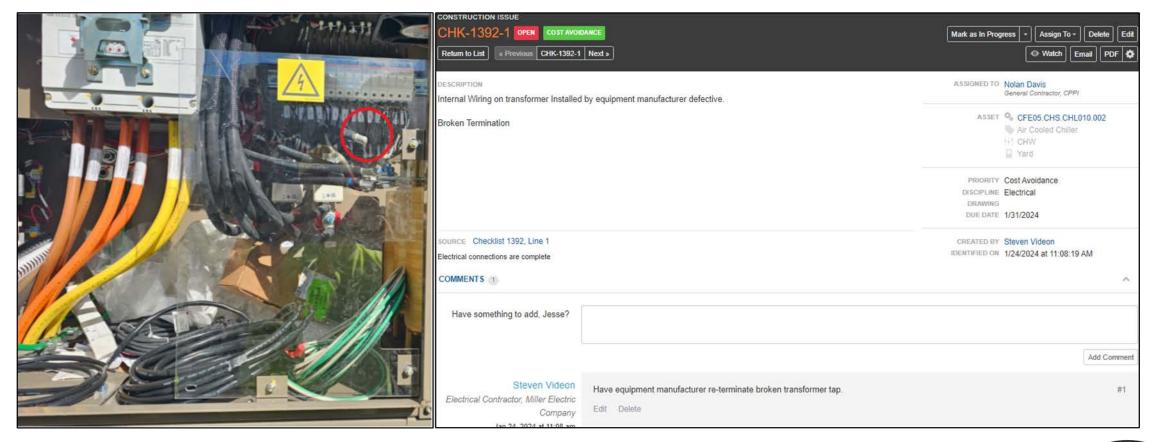
- Intuitive, live software, with full export capability
- A teamwork and resource-oriented philosophy that creates buy-in
- An efficient, integrated approach that limits duplication of effort
- Ability to provide meaningful, valuable data following effort


Intuitive Live Software


Affiliated Engineers Commis	sioning Practice) UF Health Shands/MOBII-	-Cx (17207-00)	jcoyle@aeieng.com
	 Reviews - Reports - Tasks - File Reviews - Reviews - Revie	es 👻	Export
Design Issues 0	Checklists 20 Accepted - Ready for FPT 100%	Tests 23 Recommend Acceptance 100%	Equipment 170 Startup Complete 100%
Construction Issues 170 Closed 98.82%	Checklist Lines 615 Passed 97.07%	Test Lines 1219 Passed 85.72%	Tasks 0
Design Issues Construction Issues			
2 0 OPEN IN PROGRESS	0 168 RESOLVED CLOSED	TIME TO CLOSE → 97.93 days Average time for an issue to reach a final status. (Closed)	DISCIPLINES WITH THE MOST ACTIVE ISSUES 1 Construction Manager 2 Mechanical 3 Building Automation/ Controls


What?

Intuitive Live Software



What?

Resource Oriented Approach

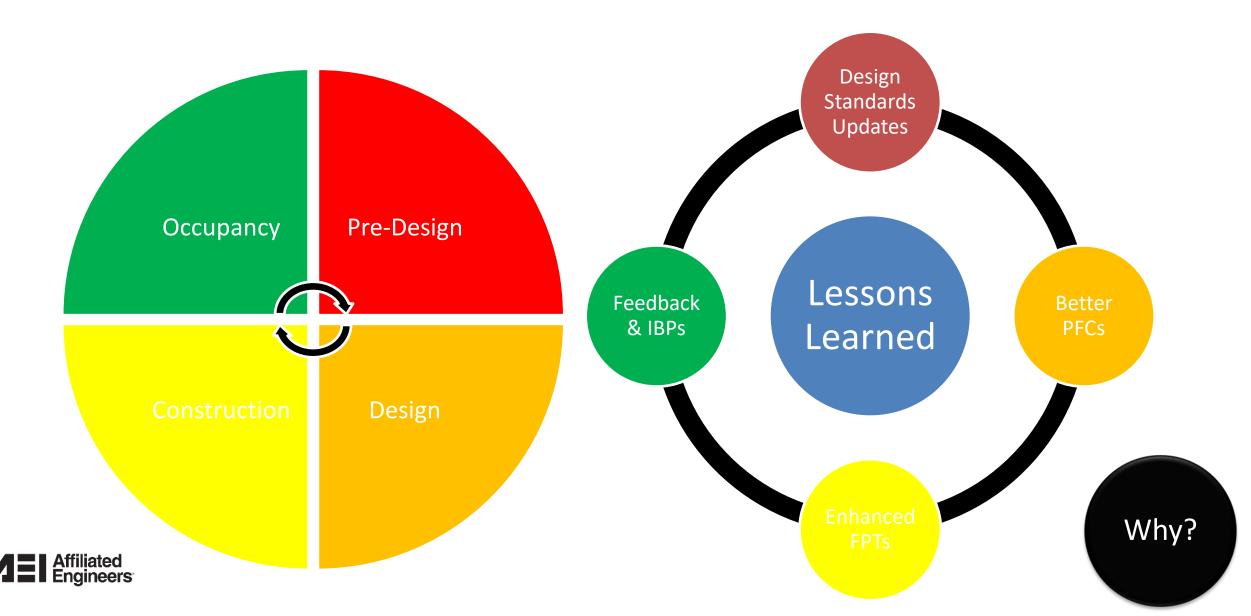
Resource Oriented Approach

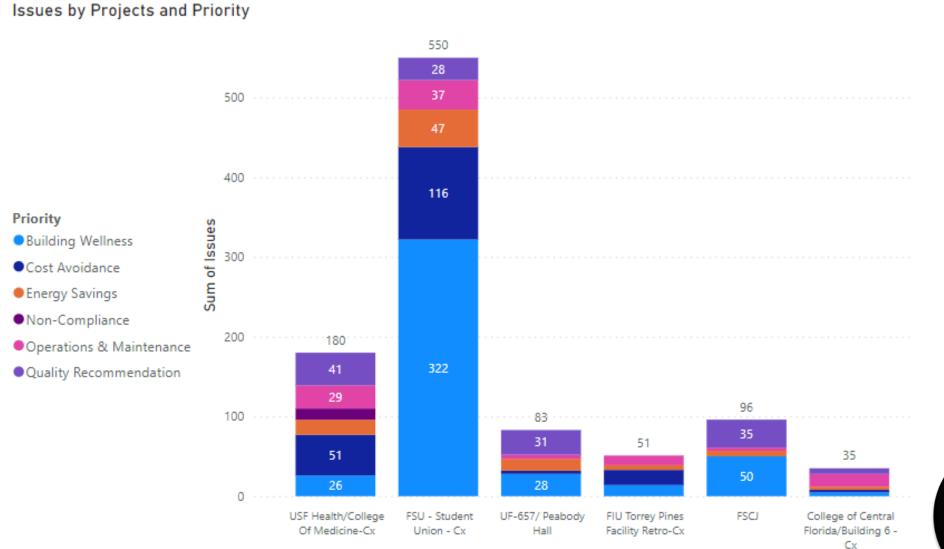
Efficient, Integrated Approach

Affiliate	ed E	ngine	ers (CA01.AHU042.001		J 🗶 ½ 2
1720	7-00					ELECTRICAL INS
					Type Construction (Pre-Functional)	J 🗶 🌿 24
					Asset 🗟 U12.A01.AHU042.001	J 🗙 🌿 25
						J 🗶 🌿 26
Section	on '	1				J 🗶 🌿 27
						J 🗶 ⅓ 28
First	Se	ectic	n °	Mike Batchelder		J 🗶 🌿 25
PRE-	NST	ALL	ATIO	N		J 🗶 🌿 30
~	×	%	1	Casing condition good - no dents or leaks		J 🗶 🌿 31
~	×	%	2	Unit installed on appropriate level curb above roof		AUTOMATION IN
~	×	%	3	Unit openings sealed		√ × ½ 32
EQUI	PME	NTI	NSTA	ALLATION		√ × ½ 33
1	×	%	4	Vibration isolation equipment installed		√ × ½ 34
1	×	X	5	Ample maintenance access for unit and components		√ × ½ 35
1	×	X	6	Doors/Panels close and continuously sealed		√ 🗶 ½ 36
1	×	X	7	Ducts are installed, tested, cleaned and labeled		✓ 🗶 ½ 37
~	×	%	8	Final Filters installed		STARTUP AND O
1	×	X	9	All dampers installed correctly and close tightly		J 🗶 🧏 38
1	×	%	10	All coil(s) are clean and fins are in good condition		√ × ½ 39
1	×	X	11	Supply fan belt installed, tensioned and guarded		√ × ½ 40
1	×	X	12	Supply fan area clean		DUCTWORK INST
1	×	X	13	Supply fan, shaft and motor alignment is correct		J 🗶 ½ 41
1	×	X	14	Drain pans pitched toward drain outlet		✓ × ½ 42
1	×	X	15	Installation in accordance with applicable building codes		✓ × ½ 43
1	×	$^{N}\!$	16	Field verification of as-built documentation		J 🗶 ½ 44
1	×	X	17	Unit installed with hurricane anchors, etc. per code		✓ × ½ 45
~	×	%	18	Lubricated weatherproof motor with guard installed		FINAL DOCUMEN
1	×	%	19	Coil fins have protective coating, including fin edges		√ ≫ ½ 46
1	×	%	20	Unit is properly insulated to prevent sweating		✓ × ½ 47
~	×	%	21	System evacuation complete		√ × ½ 48
PIPIN	GIN	ISTA	LLAT	ION		
1	×	%	22	Adequate trap depth for condensate drain line		<i>√</i> 💥 ½ 50

Ę

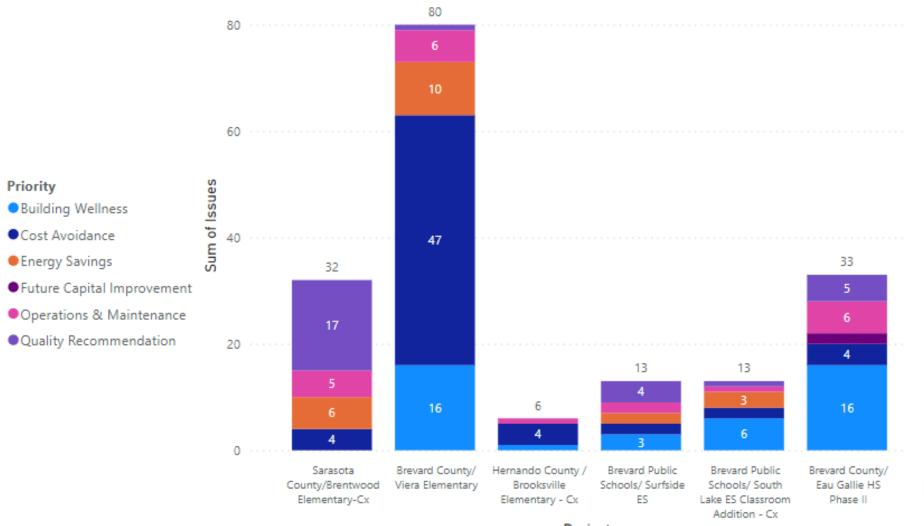
1	×	1%	23	Condensate pipe complete and properly mounted
LEC	CTRI	CAL	INSTA	ALLATION
4	х	%	24	Disconect enclosure is appropriate for space
1	х	1%	25	No excessive temperatures, moisture or dirt at VFD
1	х	X	26	Power disconnects in place and labeled
1	х	X	27	All electric connections tight
1	х	X	28	Proper grounding for components and unit
1	х	%	29	Unit has power and is interlocked with control system
1	х	X	30	Overload breakers installed and correct size
1	х	X	31	All lights installed and operational
UT	OMA	TION	INST	ALLATION
1	х	%	32	OA flow station installed with proper inlet and outlet
1	х	%	33	Control hardware complete per documents
1	х	%	34	Control system interlocks hooked up and functional
1	х	%	35	Safety devices work in HAND or AUTO
1	х	%	36	Instruments tagged appropriately
1	×	%	37	Trending of all points enabled
STAF	RTUF		D OPE	ERATION
1	×	N/A	38	No unusual noise or vibration while running
\checkmark	х	1%	39	Refrigerant charge meets manufacturer requirements
\checkmark	х	1%	40	Manufacturer installation checklist completed
DUC	тwo	RK I	NSTA	LLATION
\checkmark	×	1%	41	Duct insulation and vapor barrier properly installed
1	х	1%	42	Diffusers, grilles, ductwork complete
\checkmark	х	1%	43	Ducts cleaned per specifications
1	х	1%	44	All duct joints properly sealed with approved mastic
1	х	%	45	Access doors installed, gaskets tight
FINA	L DC	CON	IENT/	ATION AND CHECKS
\checkmark	х	%	46	Units labeled correctly per specifications
1	х	%	47	Operation and maintenance information provided
1	х	%	48	Start-up report
1	х	%	49	Control drawings
1	×	1%	50	Provide manufacturer's installation and operation data


2024 | Page 2 of 2


- PFCs are custom
- Compliment manufacturer documents
- Concisely written
- Merged meetings

Efficient, Integrated Approach

Ę

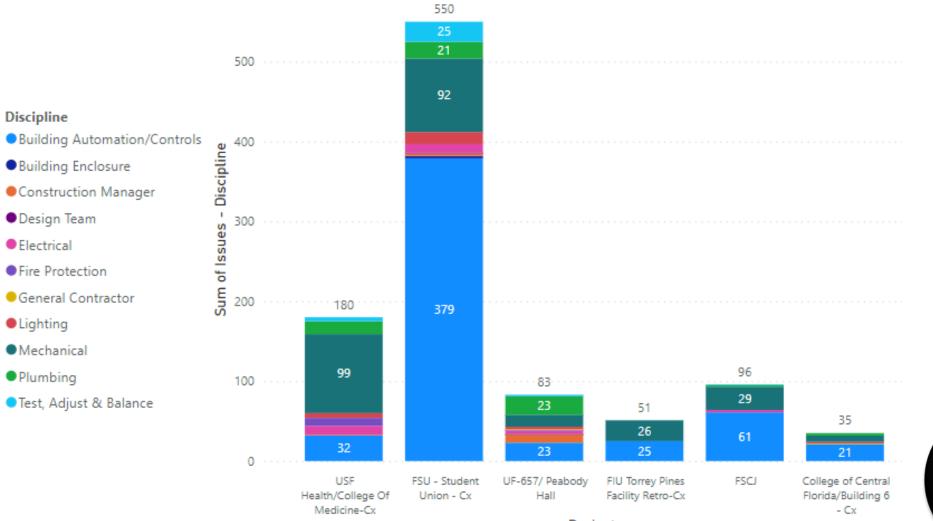


Affiliated Engineers

F

Projects

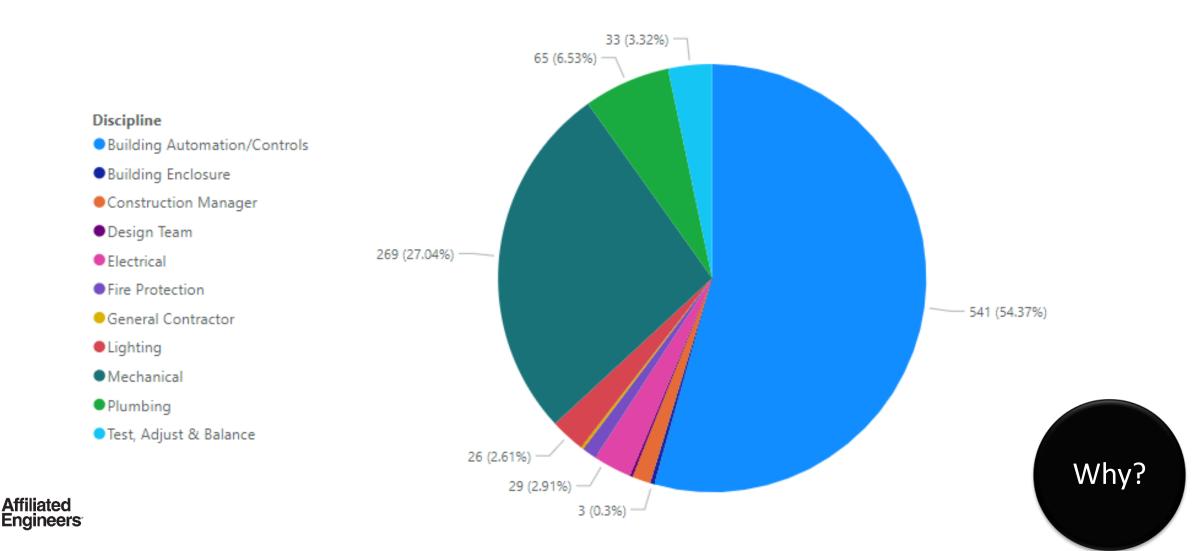
Issues by Projects and Priority

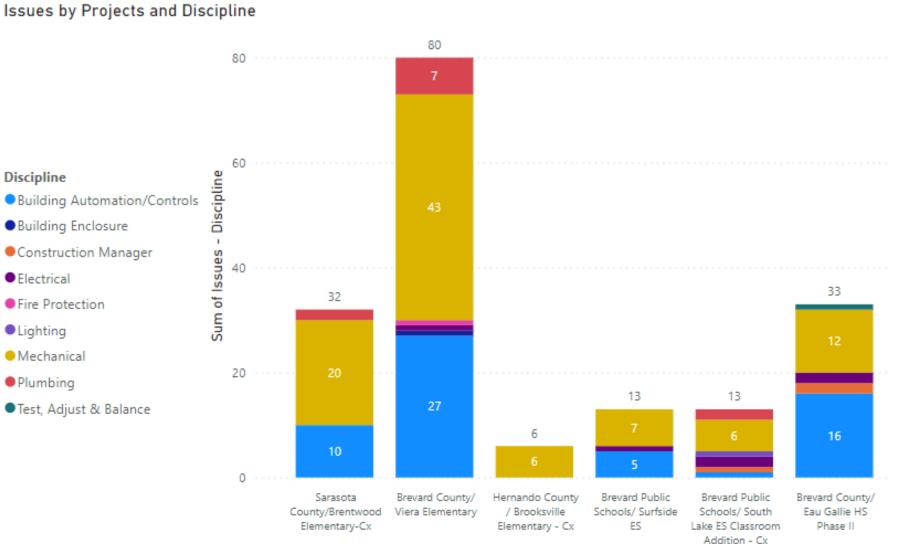


Ę

Projects

Issues by Projects and Discipline

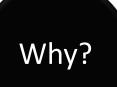

A El Affiliated Engineers

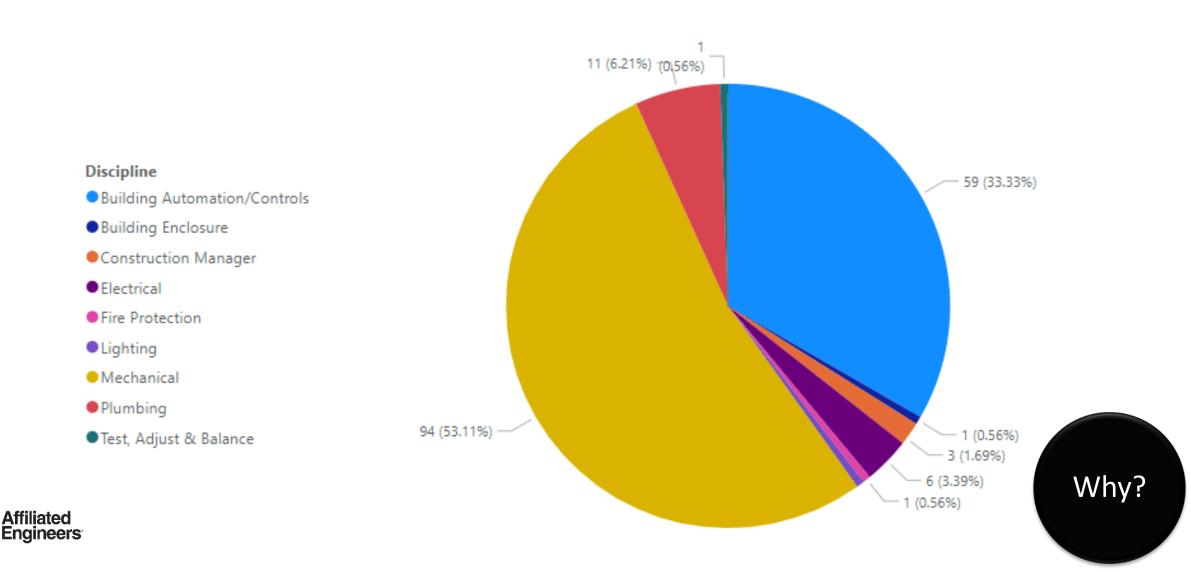

Ę

Projects

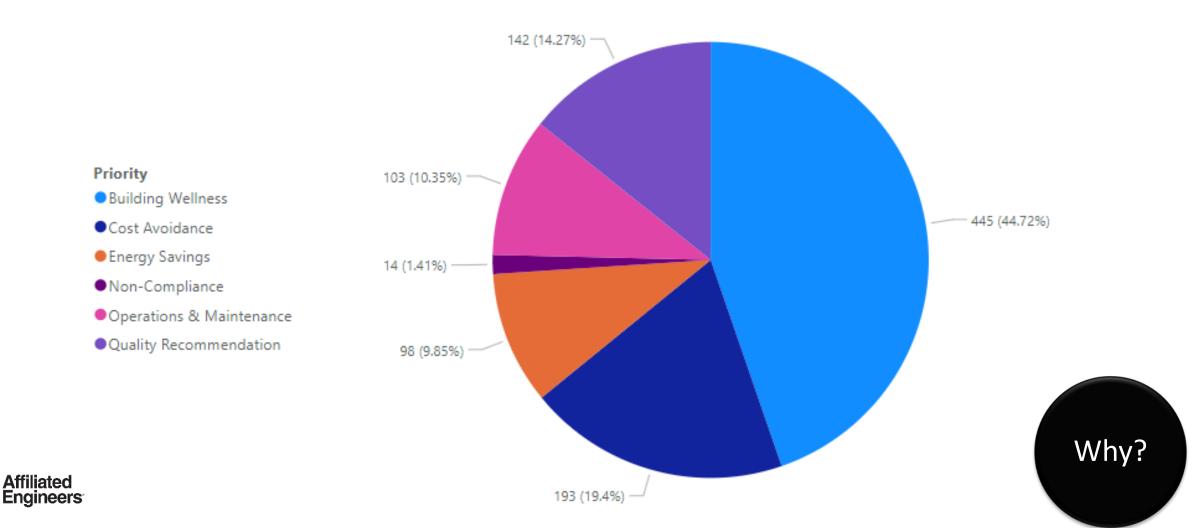
Issues by Discipline

Ę

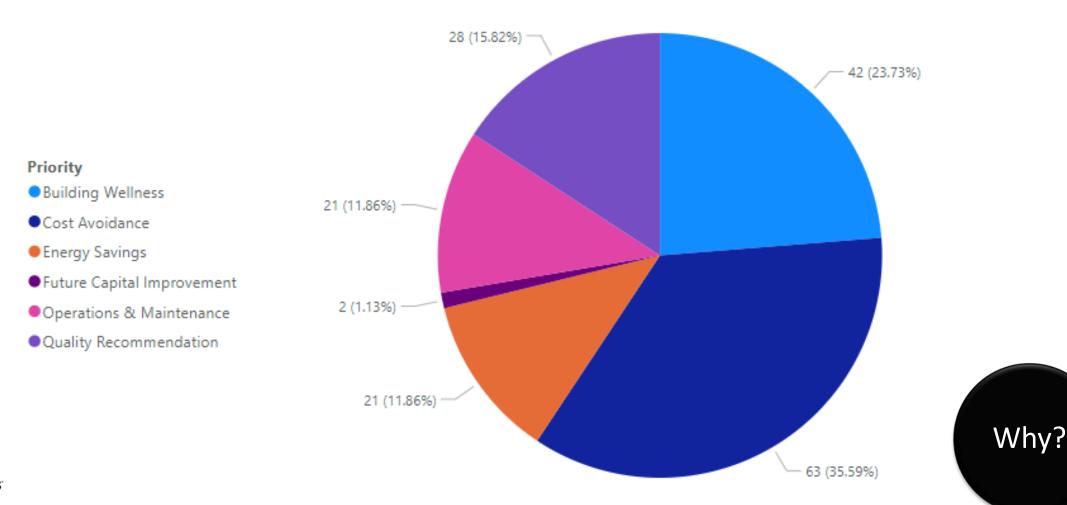



Ę

Projects

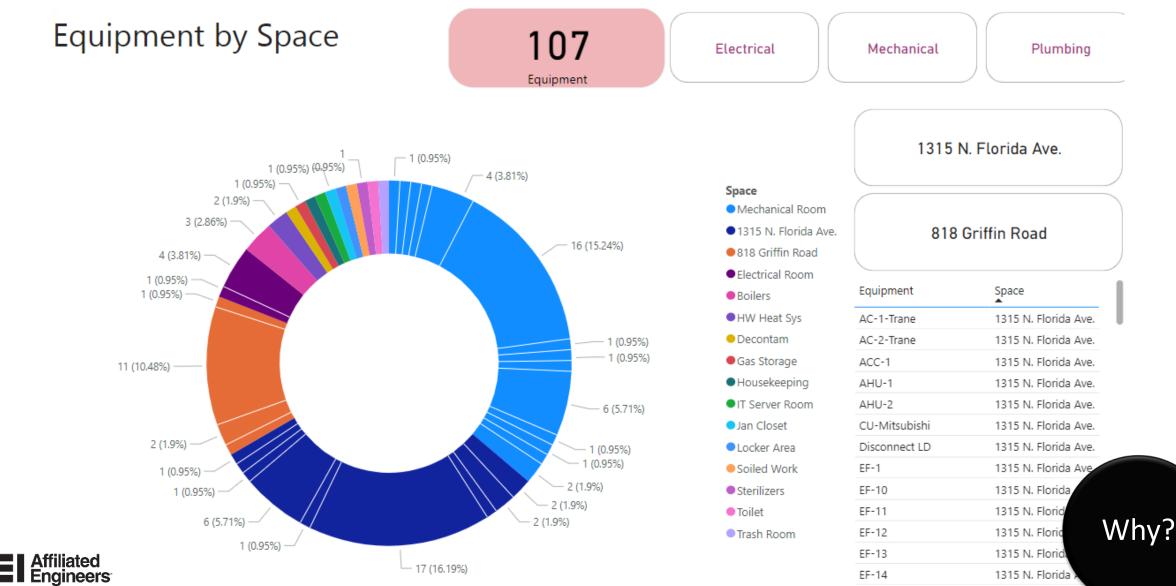

Issues by Discipline

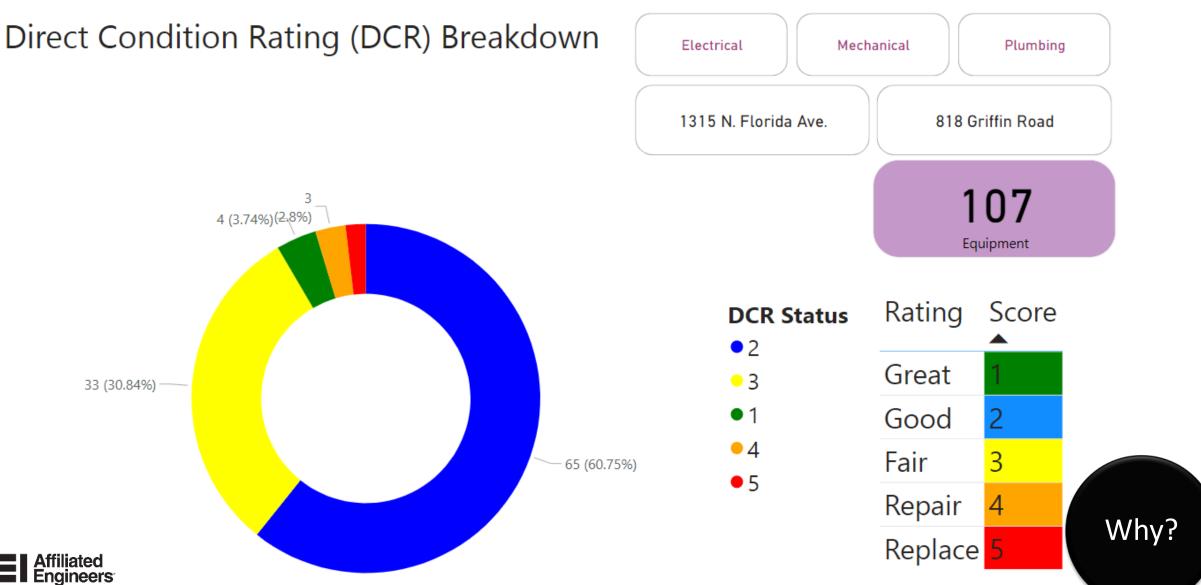
Ę



Issues by Priority

Ę


Issues by Priority



F

Ę

F

F

Equipme	nt Assessm =	lent ⊘…	1315 N. Florida	a Ave.	107
Electrical	Mechanical Plumbing		818 Griffin Road		Total pieces of equipment assessed
Equipment	Age DCR Sta	tus Estimated	Service Life Remainin	g Service Life	2.38
AC-1-Trane	8	2	15	7	2.00
AC-2-Trane	8	3	15	7	Average Direct Condition Rating of equipment assessed
ACC #1 Disconnect	19	2	40	21	
ACC-1	19	3	15	-4	
AC-MovinCool	4	1	15	11	
AHU-1	35	6	35	0	17/2
AHU-2	8	3	15	7	17.43
Air Compressor	19	2	20	1	
ATS	19	2	40	21	Average Age of equipment assessed
B-1	20	3	24	4	
B-2	20	3	24	4	
B-3	20	3	24	4	
CEH	19	2	40	21	25.07
Circulation Pump	19	2	20	1	25.07
CU-Mitsubishi	8	2	15	7	
Disconnect LD	19	2	40	21	Average Estimated Service Life of equipment assesse
EDH	19	2	20	1	
EF-1	38	4	50	12	
EF-10	18	2	25	7	- / /
EF-11	19	2	25	6	7.64
EF-12	19	2	25	6	7.04
Affiliated	19	3	25	6	Average Remaining Service Life of equipment assesse
Engineers	٥	2	25	16	5

Image Credits

- <u>https://constructandcommission.com/</u>
- <u>https://www.history.navy.mil/content/history/museums/nmusn/explore/photography/american-revolution/continental-navy-ships/continental-ship-alfred.html</u>
- <u>https://www.ashrae.org/File%20Library/Professional%20Development/Learning%20Portal/Instruct</u> <u>or-Led%20Training/Online%20Instructor-Led/FINAL_Principles-of-Building-Commissioning_Spring-Online-4-21-2020.pdf</u>
- <u>https://memberportal.bcxa.org/</u>
- <u>https://leeduser.buildinggreen.com/sites/default/files/credit_documentation/Ongoing%20Cx%20Pl_an.pdf</u>
- https://www.facebook.com/energy/

References

- <u>https://www.history.navy.mil/content/history/museums/nmusn/explore/photography/american-revolution/continental-navy-ships/continental-ship-alfred.html</u>
- <u>https://www.ashrae.org/File%20Library/Professional%20Development/Learning%20Portal/Instruct</u> <u>or-Led%20Training/Online%20Instructor-Led/FINAL_Principles-of-Building-Commissioning_Spring-</u> <u>Online-4-21-2020.pdf</u>
- <u>https://www.bcxa.org/wp-content/uploads/2019/10/Sycuro-Kelsey-Griffin-Final.pdf</u>
- <u>https://leeduser.buildinggreen.com/sites/default/files/credit_documentation/Ongoing%20Cx%20Pl</u> <u>an.pdf</u>
- https://www1.eere.energy.gov/femp/pdfs/om_7.pdf
- <u>https://www.bcxa.org/uploads/resources/BCxA%20Value%20of%20Commissioning%20Market%20S</u> <u>urvey%20Report.pdf</u>

