Design Considerations for Standing Seam Metal Roofing Systems

Program #04 SS

GARLAND OVERVIEW

- Building Envelope / Roofing manufacturer based in Cleveland Ohio.
- Founded in 1895
- 100% employee owned
- 6 to 1 asset to debt ratio
- 27 Subsidiary Companies, Full Building Envelope.

Design of Standing Seam Metal Roofing

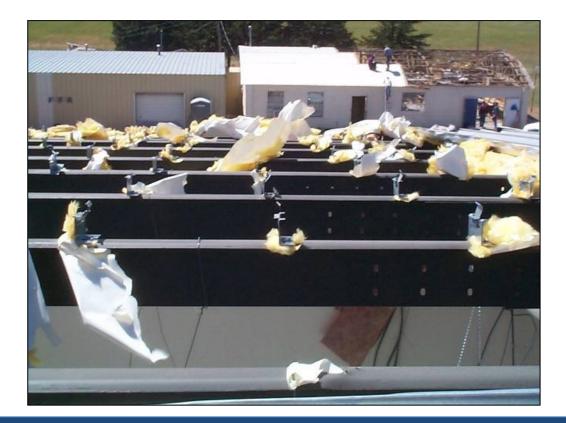
- Environmental Design Factors
 - Wind
 - Temperature
 - Rain
 - Snow
 - Fire
- Aesthetics
 - Curving and Tapering Panels
- Metal Applications
 - Long Spans
 - Metal Retrofit Framing

The Risk of Improper Design...

71 -

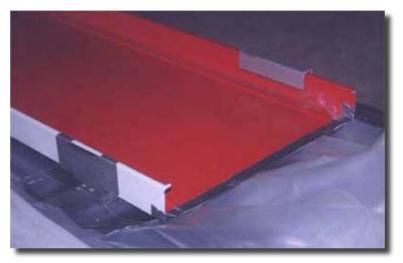
-

Environmental Factors: Wind



Wind Uplift Testing Required by Code

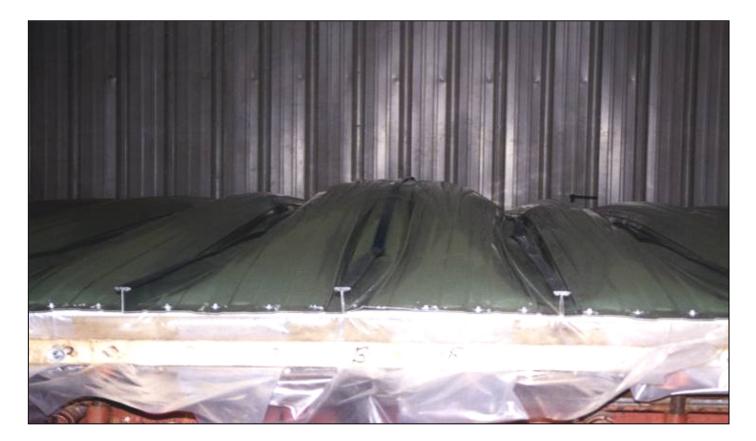
IBC 2009 1504.3.2 Metal Panel Roof Systems Through Fastened or Standing Seam Shall Be Tested in Accordance With UL 580 or ASTM E1592


- UL 580 is Antiquated
- ASTM E 1592 Written Specifically for Standing Seam Roofing

 Failure of a Standing Seam Roof Over Open Purlins

ASTM E 1592 Test Apparatus

Uses Actual Details


Manufacturer's Actual Rake Detail

Manufacturer's Actual Eave Detail

UL 580 Testing Apparatus

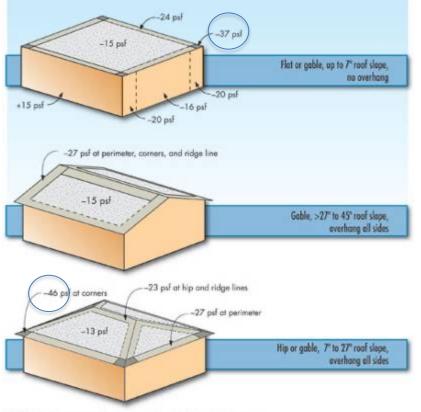
Wind Uplift Pressures

1504.1 Wind Resistance Of Roofs. Roof Decks and Roof Coverings Shall be Designed for Wind Loads in Accordance with Chapter 16.

1609.1.1 Determination Of Wind Loads. Wind Loads on Every Building or Structure Shall be Determined in Accordance with Chapter 6 of ASCE 7-16.

ASCE 7-16

American Society of Civil Engineers 7-16 Minimum Design Loads for Buildings and Other Structures


Provides the Method for Determining the WIND UPLIFT PRESSURES a Building will Experience

ASCE 7-16 Provides a *Service Level* Design with a "Likely" Probability of Occurrence During the Useful Life of the Structure.

ASCE 7-16 Criteria for Determining Design Wind Loads

- Geographic Location
 - Determines Historical Maximum Wind Speed
- Mean Roof Height
 - Wind Speed Steadily Increases With Height
- Exposure Condition
 - City Centers and Suburbs Provide More Wind Shielding Than Open Fields or Coastal Locations
- Occupancy Classification
 - Some Occupancies, Such As Schools and Fire Departments, Are Considered More Important Than Others, Such as Agricultural Buildings or Single Family Homes
- Roof Pitch and Geometry
 - the Wind Reacts in Different Manner on a Low Sloped Roof Than on a Steep Roof
- Other Factors
 - Local Topography, Wall Openings, Parapets, and Other Criteria Can Also Play a Role in Determining Wind Loads on a Structure

ASCE 7-16 + ASTM E 1592 =

Code Compliant Roof Design!

NOTE: Design pressures all assume an enclosed building with the same basic wind speed of 90 mph, exposure B, and 30' roof height.

Sample Wind Uplift Calculation

	ROOF	High School Classrooms							
		9/7/2011							
BASIC V	18.28 ASCE 7-05	psf							
Panel & Fastener	Building & Site Data								
PANEL TYPE	R-MER	Span	1	90	mph				
PANEL WIDTH	18 i	n	1 EX	C					
PANEL/CAP MATERIAL	24/24 G	A Steel	то	1.00					
SUBSTRATE MATERIAL	Ste	el	1	Enclosed					
SUBSTRATE THICKNESS	22 9	gauge	1	2	12				
FASTENER TYPE	Nood: Conceal	or #14-13 DP1	1	50					
FASTENERS PER CLIP	2		1	20					
FASTENER SAFETY FACTOR	3		1 р	20.00					
CLIP PRY COEFFICIENT	1.65	6 - 6	IMPORTAN	111	1.15				
JLTIMATE FASTENER PULLOUT	1200 I	bs/screw	1	100	ft				
ALLOWABLE CLIP LOAD	4851	bs/dip	WIND-BO	No					
PANEL SAFETY FACTOR	1,65		1		PARAPET	No	2018 AND		
	100		- Internet	ROC	F ANGLE	9.46	deg		
			PR	OTECTED O	PENINGS	No	100		
ROOF TYPE									
			EXTRE	ME THERMA	L RANGE	200	deg F		
	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5		225		
ROOF PRESSURE (psf)	19.7	34.4		21.4	26.3				
OVERHANG PRESSURE (psf)	16.45	40.22		1	2	3	1		
PANEL SPAN (ft)	6.00	5.95		6.00	6.00	N/A	N/A		
FASTENER SPAN (ft)	16.37	9.41	6.36	15.11	12.28	1			
FM RATING (FMRC 4471)		1. U			1				
EDGE ZONE WIDTH "a" =	8.00 f	t		8	2 2	8	12		

Proper Clip Spacing Installed

Other Wind Resistance Design Criteria

Local Building Code Requirements:

- Miami Dade Notice of Acceptance (NOA)
- Florida Building Code Product Acceptance Criteria
- California DSA Form IR-5 Product Acceptance Requirements
- Texas TWIA Requirements for Coastal Counties Storm Shelter Design Requirements
- FEMA 361 and ICC Storm Shelter Design Requirements

Environmental Factors: Temperature

Oil Canning Panels as a Result of Thermal Movement

Temperature

Thermal Expansion and Contraction

THERMAL EXPANSION CHART

Chart shows panel movement in inches based on 180 Degree F. Temperature Differential

MATERIAL		PANEL LENGTH FROM FIXED POINT (IN FEET)														
	FACTOR	10	20	30	40	50	60	70	80	90	100	120	140	160	180	200
G-90 GAL. STEEL	0.0000067	0.14	0.29	0.43	0.58	0.72	0.87	1.01	1.16	1.30	1.45	1.74	2.03	2.32	2.60	2.89
ALUMINUM	0.0000129	0.28	0.56	0.84	(1.11)	1.39	1.67	1.95	2.23	2.51	2.79	3.34	3.90	4.46	5.02	5.57
COPPER	0.0000094	0.20	0.41	0.61	0.81	1.02	1.22	1.42	1.62	1.83	2.03	2.44	2.84	3.25	3.65	4.06
ZINC	0.00001222	0.26	0.53	0.79	1.06	1.32	1.58	1.85	2.11	2.38	2.64	3.17	3.70	4.22	4.75	5.28
STAINLESS STEEL	0.0000096	0.21	0.41	0.62	0.83	1.04	1.24	1.45	1.66	1.87	2.07	2.49	2.90	3.32	3.73	4.15

Note: The expansion factor is in inches per inch per degree F.

2 Piece Clips Limit Thermal Movement

Top Piece Only Moves 1" to Either Side.


Bottom Piece Anchored to Frame

Installation at Higher Slopes Can Result in No Movement At All!

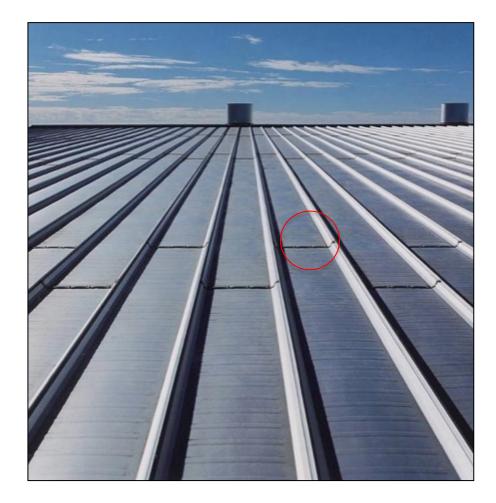
Temperature

Limited Thermal Movement

Binding of the Panel at a Clip Location

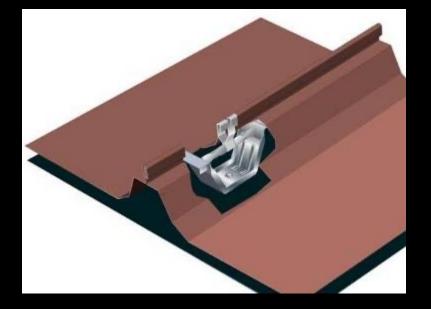
Unlimited Thermal Movement

One Piece Clip Allows Panel to Move Freely



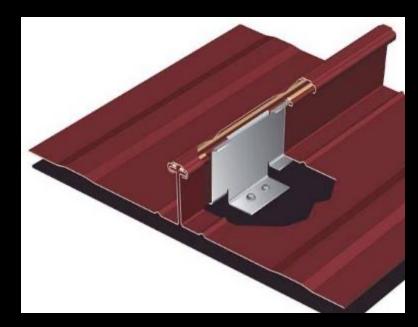
Environmental Factors: Rain

How Can a Metal Roof Leak?


Building Code: Slope

1507.4.2 Deck Slope. Minimum Slopes for Metal Roof Panels Shall Comply with the Following:

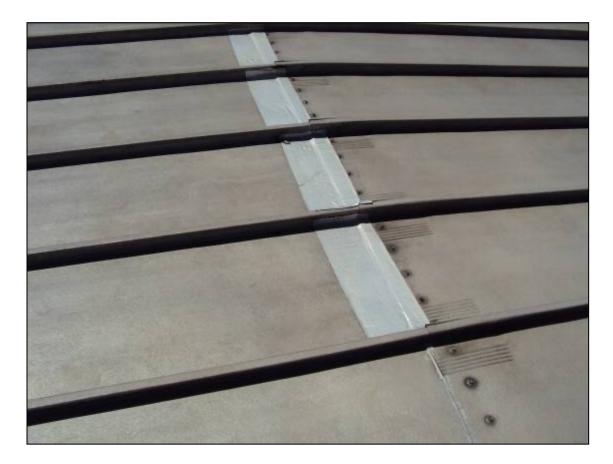
 The Minimum Slope for Standing Seam of Roof Systems Shall be One-quarter Unit Vertical in 12 Units Horizontal (1/4:12 Or 2-percent Slope).


All Metal Roof Systems are not Created Equal

Significant Differences Exist in the Clip, Seam, and Panel Design

Important Design Criteria

- Isolation of Seam Sealant from Clip
- Avoid Lap Seams and Through Fasteners
- Proper Detailing
- Product Testing


Isolation of Sealant From Clip

Proper Isolation of Sealant

Avoid Seam Laps

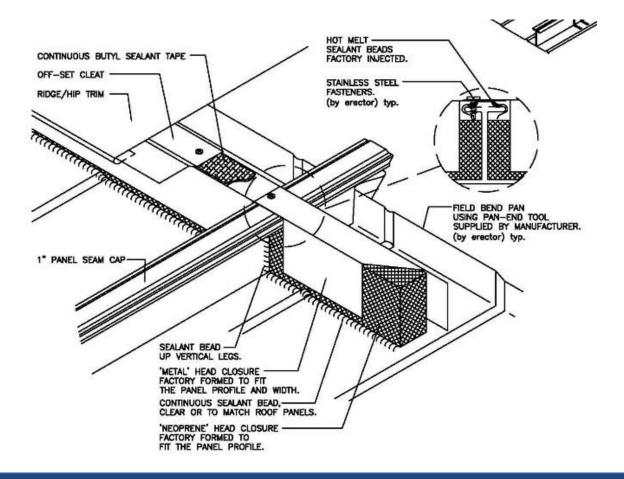
Avoid Through Fasteners

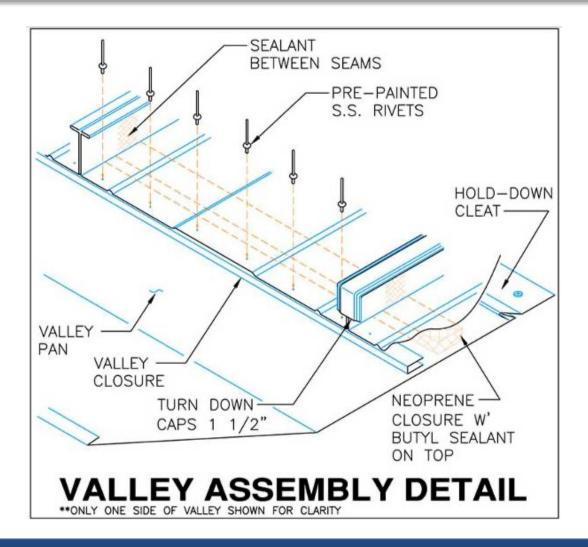
Poor Detailing

Failure of Foam Closure

Poor Detailing

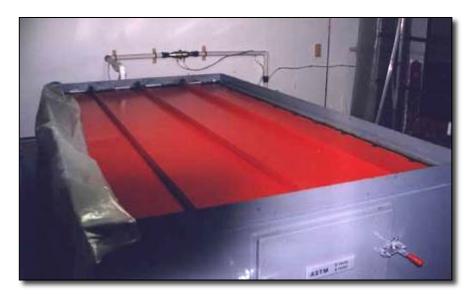
Failure of Head Closure


Detailing – Head Closure


Seam Profile – Form Follows Function

 Closure Pieces Made from Metal and Foam for Longevity

Head Closure Detail



Standing Seam Waterproofing Tests

- ASTM E 1680 Standard Test Method for Rate of Air Leakage Through Exterior Metal Roof Panel Systems
- ASTM E 1646 Standard Test Method for Water Penetration of Metal Roof Panel Systems
- AAMA 501.1 Wind Driven Rain Test
- ASTM E 2140 Standard Test Method for Water Penetration of Metal Roof Panel Systems

ASTM E1680 Air Leakage through Metal Roof System

- Cyclic Test That Measures Long Term Waterproofing
- Results Show
 - Differences In Panel
 - Performance (i.e. Not a "Pass" or "Fail" Test)

Daily Weather – ASTM E 1646 Water Penetration Metal Roof Panels System

AAMA 501.1 Wind Driven Rain Test

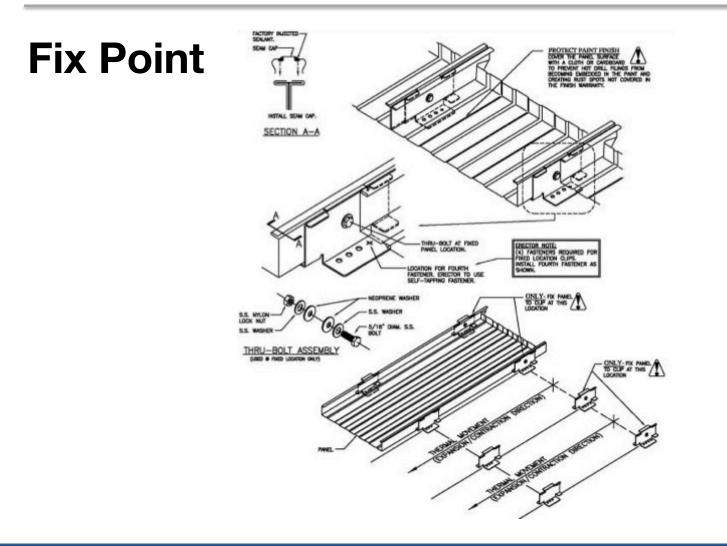
Product Submersion Evaluation ASTM E 2140 – Static Water Pressure Head

Environmental Factor: Snow

Snow

Concerns

- Weight of Snow
- Fix Point
- Eave detail



Snow

Ground Snow Load and Snow Drift Load

- Calculations to Determine Drift Loads
- Adding Snow Retention can Increase Loads on Building
- Retrofit Projects Need Special Consideration for Snow Loads
- Responsibility of the Designer to Check These Loads

Snow

Environmental Factor: Fire

Fire Testing

Fire Testing

1505.2 Class A Roof Assemblies:

Exceptions:

2. Class A Roof Assemblies also Include Ferrous or Copper Shingles or Sheets, Metal Sheets, and Shingles, Clay or Concrete, Roof Tile or Slate Installed on Noncombustible Decks or Ferrous, Copper or Metal Sheets Installed With Out a Roof Deck on Noncombustible Framing.

Fire Testing

1505.1 General:

Class A, B, C Roof Assemblies and Roof Coverings Required to be Listed by This Section Shall be Tested in Accordance With

ASTM E 108 or UL 790.

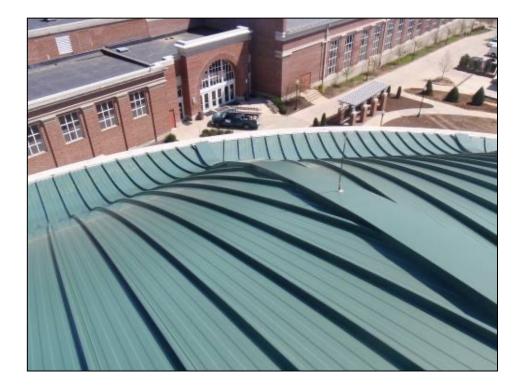
Fire Testing

Class A Components:

(When Used Over a Combustible Deck)

Fire Rated Underlayment – Nailed Base Sheet or Use of a Barrier Board Such as Gypsum Board Product

Curving


- Mechanical Curving
- •Minimum Radius
 - Aluminum vs. Steel
 - Thicker is Better

Reverse or "S" Curving

- •Minimum Radius
 - Aluminum vs. Steel
 - Seam Profile
 - Thicker is Better

Severe Oil Canning can be a Result of Poor Quality Roll Forming Equipment

Tapering

Metal Applications

Spreader Bar Used to Lift Large Panels

• Field Roll Forming Equipment Must Equal the Quality of Factory Equipment

Retrofit Metal Roofing

Summary

Design Considerations to Include:

- Wind Wind Uplift Calculations for Every Project
- Temperature Unlimited Thermal Movement
- Rain Details with "Multiple Layers of Protection" and Specify Performance Testing
- Snow Panels Must be Engineered for Snow Load
- Fire Assembly Testing for Fire Rating
- Aesthetics Mechanical Curving and Quality Manufacturing Equipment
- Warranty

Thank You!