PERFORMANCE DESIGN ASSIST: INTEGRATING SUSTAINABILITY, RESILIENCE AND WELLNESS

Presented by SEQUIL Systems Inc.

2019 FEFPA Summer Session Boca Raton Resort & Club

COURSE FOCUS PDA, an Integrative Design Approach

- and wellness features into the building's DNA.
- desires.
- follow their instincts while delivering a performance-enhanced structure.
- 4. This course is approved for AIA 1 LU|HSW. Course Number 202.2019
- 5. GBCI/USGBC approval pending.

1. Provide guidance, experience and creativity towards incorporating sustainable, resilient

2. Respond to emerging code changes due to energy, sea-level rise and healthy building

3. Integrate best practices on these elements at a high level, allowing the design team to

Continuing Education Provider

SEQUIL SYSTEMS INC.

ABOUT US Performance Consultants to the Built Environment

SEQUIL Systems is a consulting firm created to provide support for building **owners**, **architects**, **developers**, and building design and construction **project teams** world-wide.

SEQUIL is located in Delray Beach, but our projects reach far beyond South Florida.

Establish **efficiency** + **sustainability** + **wellness** + **adaptation** guidelines that create high-performance sustainable and resilient structures that provide healthy environments for their occupants.

We ensure that design philosophies, strategies and decisions are made with absolute consideration of energy, internal, and external environments. California

New York

Florida

Venezuela Colombia

<u>SET</u> GOALS AND EXPECTATIONS *Designing for Performance*

SURE THERE'S THE PROGRAM. BUT WHAT ABOUT PERFORMANCE?

- The architect and engineers may try to design efficient systems...but to code.
- In a performance-based design approach, performance goals are developed during the initial stages of the design.
- The design team should buy into the goals, and it is most effective when the design team is involved in establishing the goals.
- The Integrated Design Process Guideline provides examples of how goals can be integrated into the design process

What does r	ny grade mean?
90-100	 I understand! Neat and complete! Excellent effort!
80-89	• I mostly understand • Mostly neat and complete • Good effort
70-79	 I understand some Not all complete or neat May not be my best effort I need to ask more questions
60-69	 I understand very little May not be complete or neat I need more instruction
F 0-59	 I do not understand I need to ask for help May not be complete or neat

<u>SET</u> GOALS AND EXPECTATIONS In Design Phase

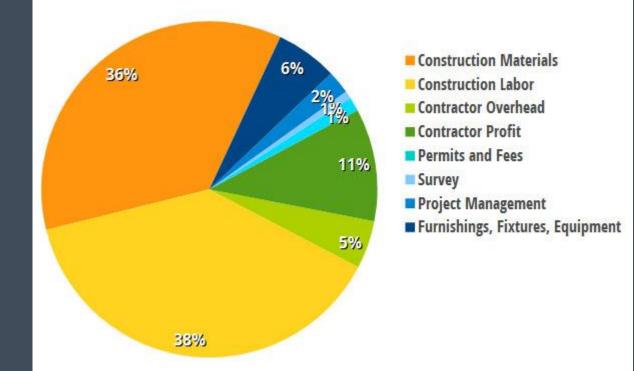
TALK IS CHEAP!

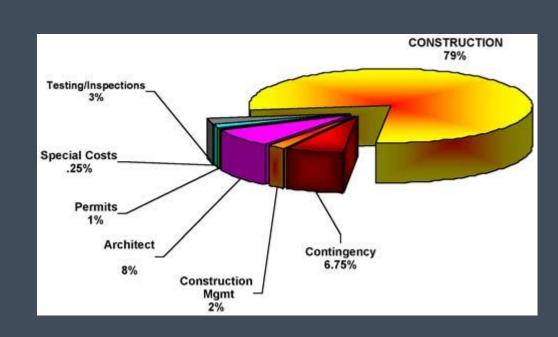
So communicate. A lot.

<u>SET</u> GOALS AND EXPECTATIONS In Design Phase

INSTRUCTION MANUALS

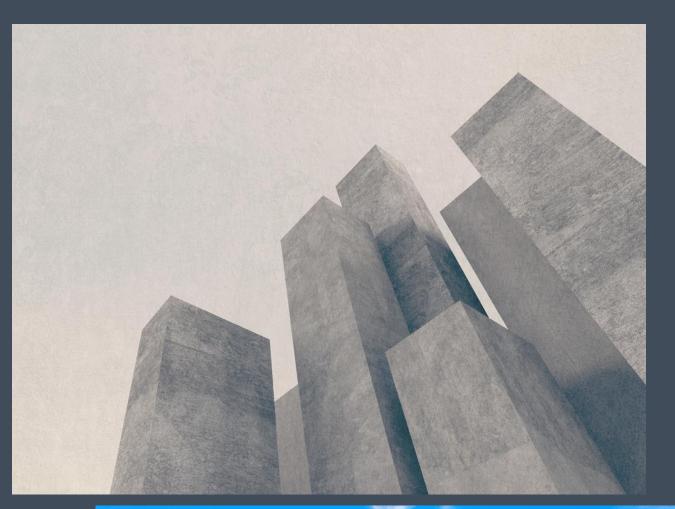
How to DESIGN the building – IDP, OPR, BOD *How to BUILD the building – Const. Docs, Submittals* How to OPERATE the building – O&Ms, Cx Manuals, Training




<u>SET</u> GOALS AND EXPECTATIONS In Design Phase

TRUE COST ASSESSMENT

High-performance buildings are only more expensive when you bolt on efficiencies to a conventionally-designed project.



<u>SET</u> GOALS AND EXPECTATIONS In Design Phase

TOP-DOWN APPROACH

Design <u>down</u> from a **DREAM** building, rather than <u>up</u> from a DRAB building.

<u>SET</u> GOALS AND EXPECTATIONS Integrative design from the beginning

INTEGRATED DESIGN TEAM

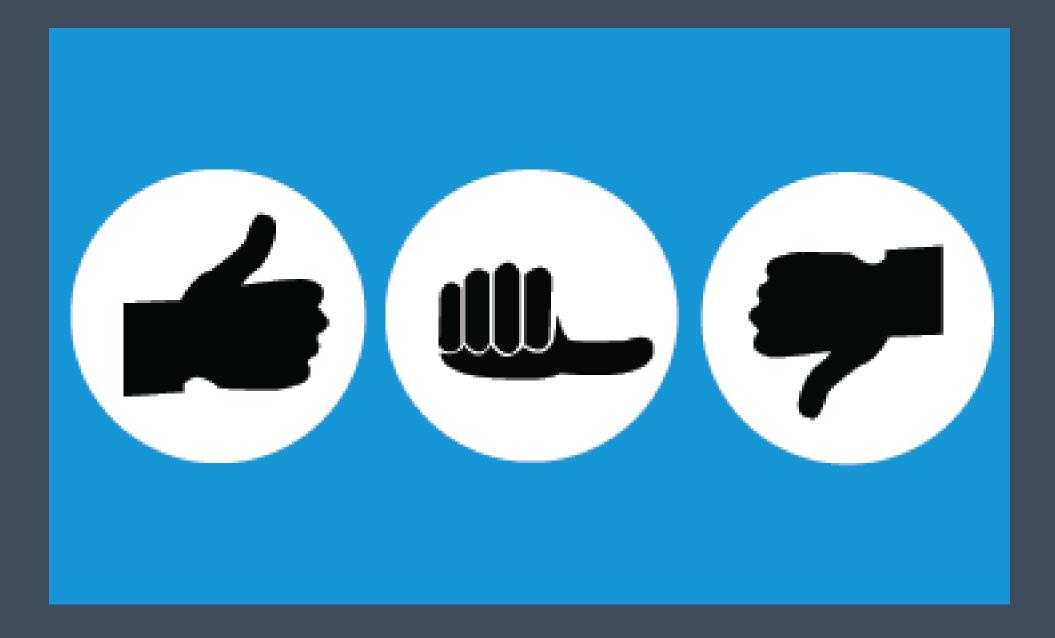

Performance Based Design ≠ Performance

Clearly define ownership goals

Team communication

Taking a **DEEP DIVE** into performance by design

<u>SET</u> GOALS AND EXPECTATIONS Integrative design from the beginning


INTEGRATED DESIGN TEAM

- New set of skills and priorities •
- DIVERGENCE IN DESIGN SOLUTIONS can be

common when team members are working in

too much isolation

- Life Cycle Analysis •
- TRACKING AND ASSURANCE

MEET GOALS AND EXPECTATIONS In Design Phase

QUANTITATIVE ANALYSIS

Use ENERGY MODELING to document building performance and inform the design.

Reveal **BIG BOLD TARGETS** for improvements

Use MEASURABLE GOALS to VERIFY and REASSESS

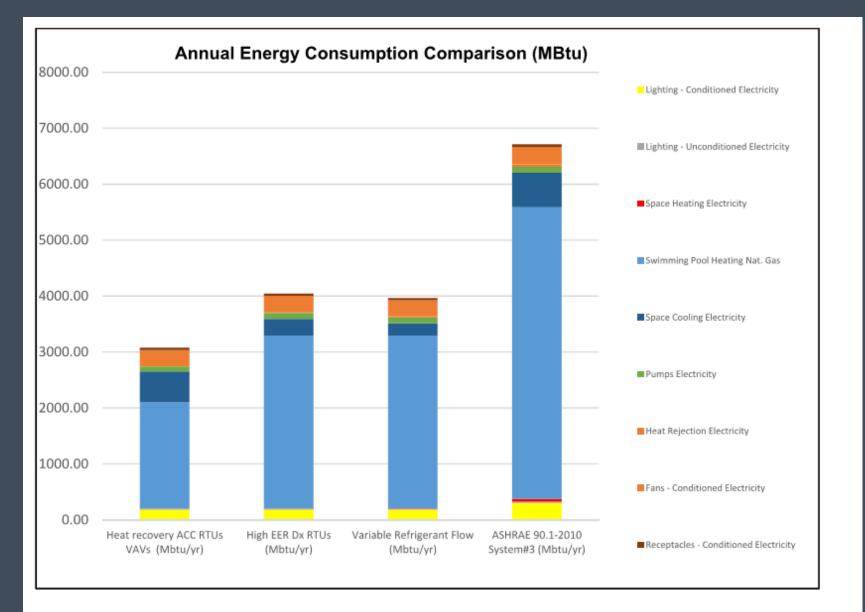


Figure 1: Comparison of annual energy cost for the baseline (1) and current design (2), broken down by end use, and the high-efficiency Package 1 (3) and Package 2 (4) as outlined in the table below.

Run		Strategy	Annual Energy Cost	Annual Savings Relative to Baseline	% Cost Savings (LEED)	LEED Points	Nat. Gas Consumption (therms)	Electric Consumption (kWh)	Electric Demand (kW)
	LEED Baseline	LEED Baseline - ASHRAE 90.1-2010	\$61,603				52,117	545,845	134
	Proposed	Heat Recovery ACC	\$45,535	\$16,068	26.1%	11	19,311	426,214	98
	1	High Performance RTUs	\$40,334	\$21,269	34.5%	13	31,147	360,914	89
	2	Variable Refrigerant Flow	\$37,933	\$23,670	38.4%	15	30,917	337,507	72

MEET GOALS AND EXPECTATIONS In Design Phase

QUANTITATIVE ANALYSIS

DEFINE energy-saving goals **ESTABLISH** ROI timeline CREATE ECMs

Energy Math

Reduced consumption = Reduced cost

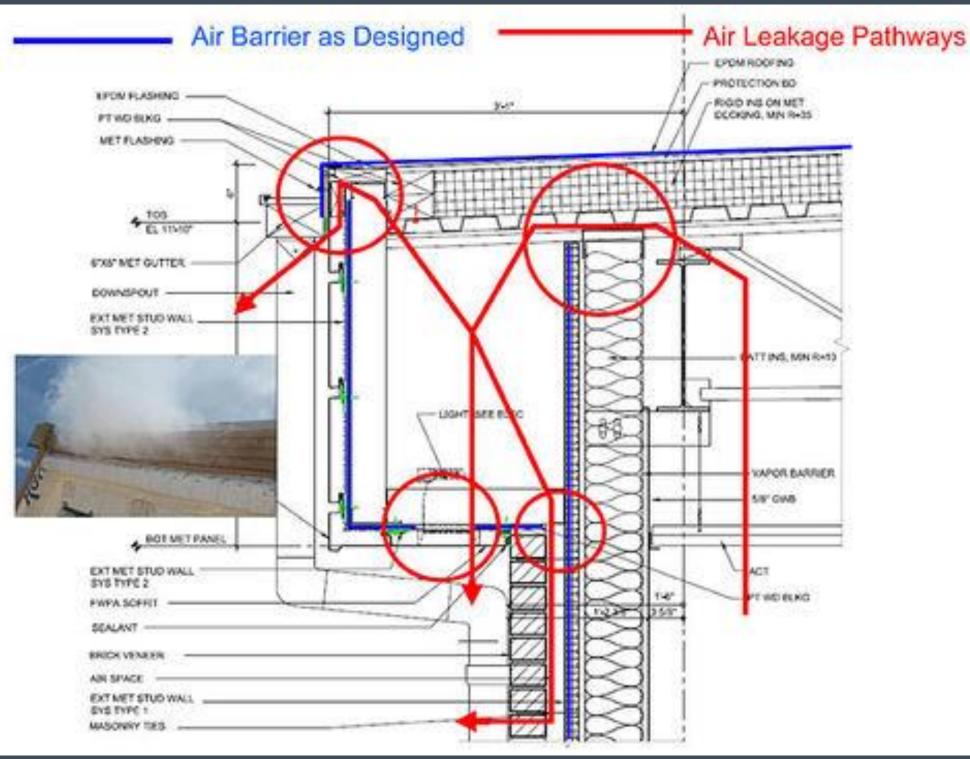
Energy C	ost Budget	/ PRM	Summary
----------	------------	-------	---------

. ..

	Date: May 06, 2018			
City: Miami Florida	Weather Data: MIA FY, FLorida			
Note: The percentage displayed for the "Prepaged/ Ress 9/"				

	* Depote the base alternative for the ECR study		<mark>* Alt-1 W</mark> a	* Alt-1 Water Cooled Chillers wi Alt-2 ASHRAE 9012010 System8		0 System8	Alt-3 Air Cooled Chillers				
			Energy 10^6 Btu/yr	Proposed / Base %	Peak kBtuh	Energy 10^6 Btu/yr	Proposed / Base %	Peak kBtuh	Energy 10^6 Btu/yr	Proposed / Base %	Peak kBtuh
	Lighting - Conditioned	Electricity	1,455.7	10	342	2,493.8	171	598	1,455.7	100	342
	Lighting - Unconditioned	Electricity	816.0	6	206	1,002.6	123	245	816.0	100	206
	Space Heating	Electricity	59.2	0	1,168	332.9	563	3,584	70.2	119	1,178
	Space Cooling	Electricity	<mark>4,575.1</mark>	31	1,867	5,900.6	129	2,497	<mark>8,232.8</mark>	180	3,668
	Pumps	Electricity	2,061.4	14	360	3,542.1	172	495	951.1	46	289
	Heat Rejection	Electricity	<mark>1,349.9</mark>	9	226	2,589.7	192	353	1,907.5	141	760
	Fans - Conditioned	Electricity	1,970.2	13	619	2,781.2	141	1,236	1,970.2	100	619
	Receptacles - Conditioned	Electricity	480.6	3	103	480.6	100	103	480.6	100	103
	Stand-alone Base Utilities	Electricity	1,595.2	11	623	1,805.2	113	674	1,595.2	100	623
		Gas	401.2	3	150	802.4	200	300	401.2	100	150
	Total Building Consumption		<mark>14,764.4</mark>			21,731.1			17,880.5		

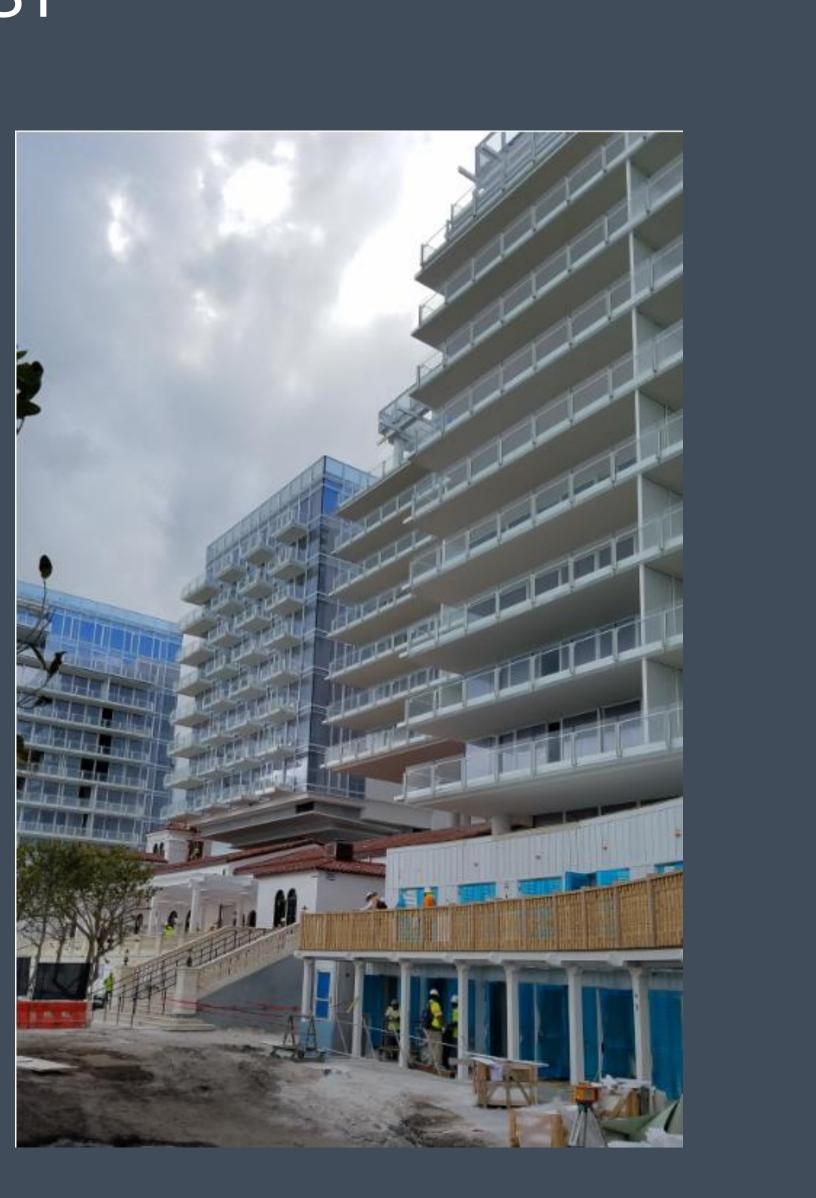
		* Alt-1 Water Cooled Chillers w		Alt-2 ASHRAE 9	012010 System8	Alt-3 Air Cooled Chillers		
Total Number of hours heating load not met Number of hours cooling load not met		8 27		4 0		8 27		
		* Alt-1 Water Cooled Chillers w		Alt-2 ASHRAE 9012010 System8		Alt-3 Air Cooled Chillers		
		Energy 10^6 Btu/yr	Cost/yr \$/yr	Energy 10^6 Btu/yr	Cost/yr \$/yr	Energy 10^6 Btu/yr	Cost/yr \$/yr	
Electricity		14,363.3	426,731	20,928.8	621,792	17,479.3	519,308	
Gas		401.2	481	802.4	963	401.2	481	
Total		14,764	427,213	21,731	622,755	17,880	<mark>519,790</mark>	



MEET GOALS AND EXPECTATIONS In Design Phase

BUILDING ENVELOPE

Modern Design (REVIT) + Construction (Prefab) technologies Increasing precision and building tightness Envelope Commissioning


MEET GOALS AND EXPECTATIONS In Design Phase

BUILDING ENVELOPE

Consider Window-to-Wall Ratios Better Envelope = Better building performance Couple Envelope with: System Improvements

Automation

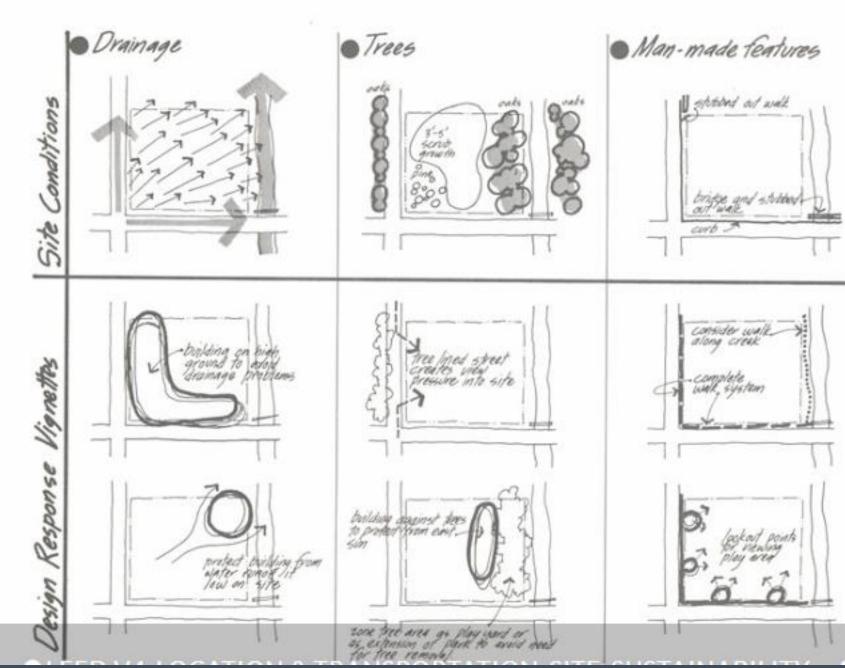
Expectations

PERFORMANCE DESIGN-ASSIST MEET GOALS AND EXPECTATIONS In Design Phase

ACCOUNTABILITY

Assign responsibilities for TRACKING and **ASSURING** building performance

<u>SET</u> GOALS AND EXPECTATIONS Integrated Project Delivery


INTEGRATED PROJECT DELIVERY...FOR SCHOOLS

An approach that involves people, systems, and business structures (contractual and legal agreements) and practices. The process harnesses the talents and insights of all participants to improve results, increase value to the owner, reduce waste, and maximize efficiency through all phases of design, fabrication, and construction. (Adapted from American Institute of Architects).

<u>SET</u> GOALS AND EXPECTATIONS *Integrative Design Process*

PRE-DESIGN PRACTICE

Early definition of performance goals Identify synergies across disciplines Bake these into the design >> Early and lasting impact on building performance

<u>SET</u> GOALS AND EXPECTATIONS *Designing for Performance*

ENERGY

□ Site conditions Massing and Orientation Basic envelope attributes Lighting levels **Thermal comfort ranges** Plug and Process load analysis Program and operations Energy consumption, reduction

WATER

Indoor water demand

Outdoor water demand

Process water demand

Supply sources – potable, non-potable

<u>SET</u> GOALS AND EXPECTATIONS *Designing for Performance*

SITE SELECTION

Building site attributes
Transportation to/from
Occupant and community well-being

WELLNESS

Establish health goals, targets

Prioritize design strategies

Anticipate outcomes

Analyze impact on population health behaviors

RESILIENCE

Hazard assessment

Climate assessment

Service life of facility

Duration disruption

<u>SET</u> GOALS AND EXPECTATIONS *Designing for Performance*

- Life-cycle analysis
- Operations
- **FGBC**

- □ NGBS
- Resource conservation

- Fundamental Energy Modeling
- Enhanced Energy Modeling
- Performance Design Assistance
- Energy Conservation Consulting

- **G** Fundamental Commissioning
- Enhanced Commissioning
- **Envelope** Commissioning

Commissioning

- Occupancy Commissioning
- Continuous Commissioning
- **Enterprise Commissioning**

<u>SET</u> GOALS AND EXPECTATIONS *Designing for Performance*

WHAT ABOUT ZERO ENERGY?

- second only to salaries.
- \bullet funding that could be allocated to resources for students.
- On average, zero energy schools can use between 65%-80% less energy than • renewable energy.
- mathematics (STEM) skills critical to our nation's future.

Energy consumption represents the second highest operational expense to schools,

Each year, a significant portion of taxpayer dollars are spent on school utility expenses, thereby cutting into

conventionally constructed schools, and the remaining energy required is supplied by

In addition, zero energy schools can become prominent community landmarks that

educate a new generation of students with science, technology, engineering, and

(source: U.S. Department of Energy Better Building Initiative)

<u>MEET</u> GOALS AND EXPECTATIONS *Designing for Performance*

SUSTAINABLE DESIGN INTEREST QUESTIONNARE

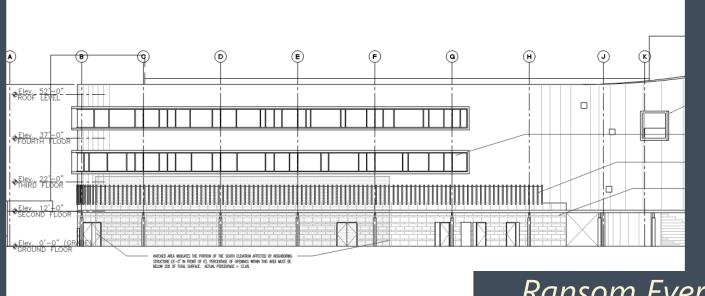
		SUSTAINABLE DESIGN INTEREST QUESTIONNARE		
			YES	NO
1	School as a Teaching Tool	Provide school staff with the knowledge to identify what supports or impedes healthy, resource- efficient and environmentally sustainable learning spaces; and the foundation for imparting that knowledge to their students. Additionally, educate students on the connections between the built and natural environment; and the knowledge, skills, and behaviors to recognize and apply that learning in their own school facility.	1	
2	Bike racks and showers	Provide covered bicycle storage for at least 5% of regular building occupants, but no fewer than four storage spaces per building. AND Provide at least one on-site shower with changing facility for the first 100 regular building occupants (excluding all students).	1	
3	Carpool parking spaces	Provide reserved parking for those who carpool to school	1	
4	Electric Vehicle Charging Stations	Provide at least 1 station serving 2 electric vehicles for those who drive electric vehicles to school	\checkmark	
5	Green buses	Develop and implement a plan for every bus serving the school to meet certain emissions standards within <u>seven vears</u> of the building certificate of occupancy.		\checkmark
6	4th Level Courtyard: native landscape	To conserve and restore areas to provide habitat and promote biodiversity. To use as a teaching tool for students showing plants that are native to South Florida.	\checkmark	
7	4th Level Couryard: restorative garden space	Providing a therapeutic landscape amenity, such as a restorative garden, improves employee mental health, reduces stress levels, and improves productivity.	\checkmark	
8	4th Level Couryard: fruit and vegetable garden space	Providing on-site gardening opportunities contributes to increased physical activity levels and social capital benefits from working in the gardens. In addition, convenient access to healthy food helps improve diets for everyone.	1	
9	Stairwell active design	Active design strategies in stairwell design include, but are not limited to, posting motivational signs, installing a music system or creative lighting, moderating stairwell temperature, adding rubber treading to stairs, painting walls a bright color, and hanging framed artwork.	1	
10	Ventilation	Provide mechanical ventilation in all rooms and provide separate ventilation in all areas with chemical use or storage	\checkmark	
11		To connect building occupants with the outdoors, reinforce circadian rhythms, and reduce the use of electrical lighting by introducing daylight into the space. Provide manual or automatic (with manual override) glare-control devices for all regularly occupied spaces.		\checkmark
	Permanent educational signs promoting hand-washing in bathrooms	To help reduce the transmission of diarrheal and respiratory infections, potentially reducing absenteeism.	\checkmark	

MEET GOALS AND EXPECTATIONS Designing for Performance SUSTAINABLE DESIGN INTEREST QUESTIONNARE

13	Water Bottle Refilling Station at every floor	The ability for stude hydration and decre decreased obesity ar
14	Healthy Vending	Adopting healthy fo food and beverages, well-being.
16	Green (Vegetative) Roof	To be used as a teach animals
17	Reflective Roof	To help deflect heat
18	Photovoltaic panels (Solar Panels) and/or Wind Turbines and/or Solar hot water	To be used to provid There are tax incent
19	Water Cistern	To be used to collect
20	Low flow plumbing fixtures	Reducing the amount lavatories, 1.5 gpm
21	Advanced Energy Metering	Installing a Building mechanical systems helpful for building
22	Recycling	Provide recycling w recycled
23	Enhanced Indoor Air Quality Strategies	Providing 10 feet lo dioxide monitors
24	Lighting controllability	To promote occupa For at least 90% of in occupants to adjust lighting levels or sce level (not including
25	Visibility to systems	Providing transpare by having vision gla
26	Quality Views	Providing vision gla connectino to the n
27	Acoustic performance	Design classrooms a requirements of AN STC rating of at least rating.
28	Chiller System	Consider using a wa efficiency/savings.

ents and faculty to refill water bottles with potable water can lead to improvied eases in consumption of sugar-sweetened beverages, potentially leading to nd related health problems.	<	
ood and beverage standards can increase student and faculty access to healthy , and decrease access to competing food and beverages, leadign to increased	✓	
hing tool, to help deflect heat from the building, and to provide a habitat for		\checkmark
away from the building	<	
de a certain amount of power for the school's use and use as a teaching tool. ives and other benefits out there.	<	
t raintwater for irrigation use such as for the courtyard landscaping	<	
nt of water used for plumbing such as 1.1 gpf toilets, 0.125 gpf urinals, 0.5 gpm showers, and 1.5 gpm kitchen faucets.	✓	
Automation System that monitors all electrical consuming systems including , lighting systems, plug-loads, etc. A good tool to be studied by students and operators	<	
aste bins thorughout the building and provide descriptions of waste that can be	<	
ng walkoff mats in all interior spaces entrered from the outside and/or carbon		
nts' productivity, comfort, and well-being by providing high-quality lighting. ndividual occupant spaces, provide individual lighting controls that enable t the lighting to suit their individual tasks and preferences, with at least three enes (on, off, midlevel). Midlevel is 30% to 70% of the maximum illumination daylight contributions).	TBD	TBD
ency for students and teachers to study/see the Chiller Room on the ground floor zing along the cooridor	~	
zing for 75% of all regularly occupied floor area to give building occupants a natural outdoor environment by providing quality views.	\checkmark	
and other core learning spaces to meet the sound transmission class (STC) SI S12.60–2010 Part 1, or a local equivalent. Exterior windows would have an t 35, unless outdoor and indoor noise levels can be verified to justify a lower	~	
ter-cooled chiller vs an air-cooled chiller to capture more energy	✓	

<u>MEET</u> GOALS AND EXPECTATIONS Building Performance as Teaching Tools


SITE IMPROVEMENTS

- Reduce Parking
- Furnishings and Finishes
- On-site water reuse
- Select components and furnishings for dual-purpose

e.g. Swimming pool coupled into fully integrated water

resource system

Christopher Columbus High School

Ransom Everglades High School

Photo: Perkins + Will

<u>MEET GOALS AND EXPECTATIONS</u> Building Performance as Teaching Tools

ENERGY REDUCTION

- Integrate PV materials into building envelope ulletmaterials, shading
- Capture all waste heat into other heating uses ullet
- Utilize chilled beam and other proven technologies •
- Centralize OAUs to deliver 100% dehumidified and filtered air •
- Manage wellness objectives by redefining "normal" air temps ullet

<u>MEET GOALS AND EXPECTATIONS</u> Building Performance as Teaching Tools

BASELINE STRATEGIES, GOALS, TACTICS

ESTABLISH a foundation for imparting that knowledge to their students **EDUCATE** students on the connections between the built and natural environment

- **IDENTIFY** what promotes or impedes healthy, resource-efficient + environmentally sustainable learning
- **PROVIDE** knowledge, skills, and behaviors to recognize and apply that learning in their own school facility

PERFORMANCE DESIGN-ASSIST <u>MEET</u> GOALS AND EXPECTATIONS *Building Performance as Teaching Tools* RENEWABLE ENERGY SYSTEMS

PERFORMANCE DESIGN-ASSIST MEET GOALS AND EXPECTATIONS Building Performance as Teaching Tools

INTEGRATED SYSTEMS INTERACTING

Courtesy of: Frost Museum of Science

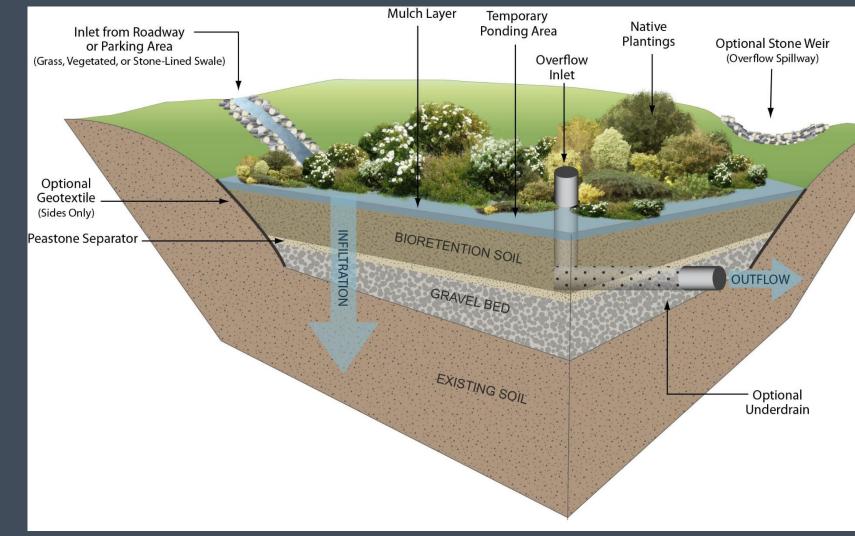
Courtesy of: Perkins + Will, Ransom Everglades

PERFORMANCE DESIGN-ASSIST MEET GOALS AND EXPECTATIONS Sustainability and Wellness as Teaching Tools LANDSCAPE, WATER AND WELLNESS

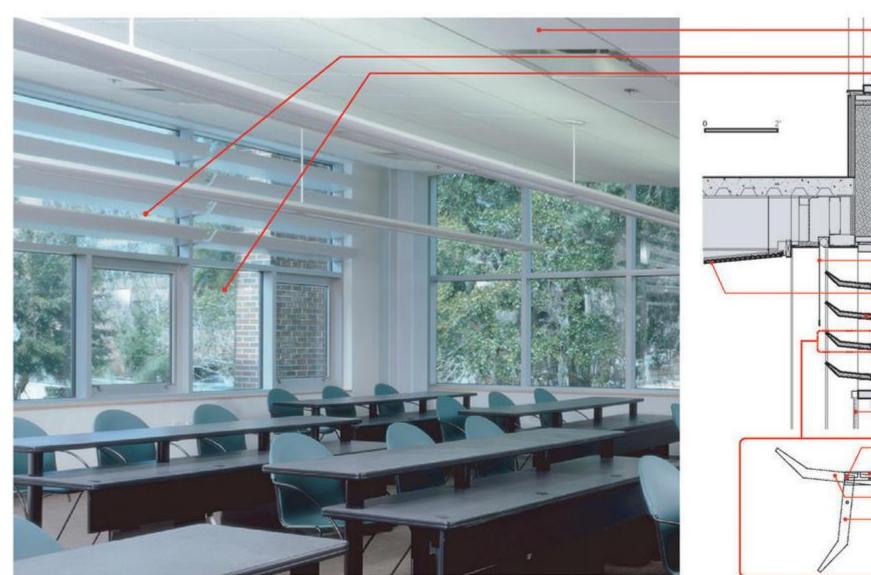
Courtesy of: Arquitectonica, UM Student Housing

LANDSCAPE, WATER ND WELLNESS

Courtesy of: Arquitectonica, UM Student Housing

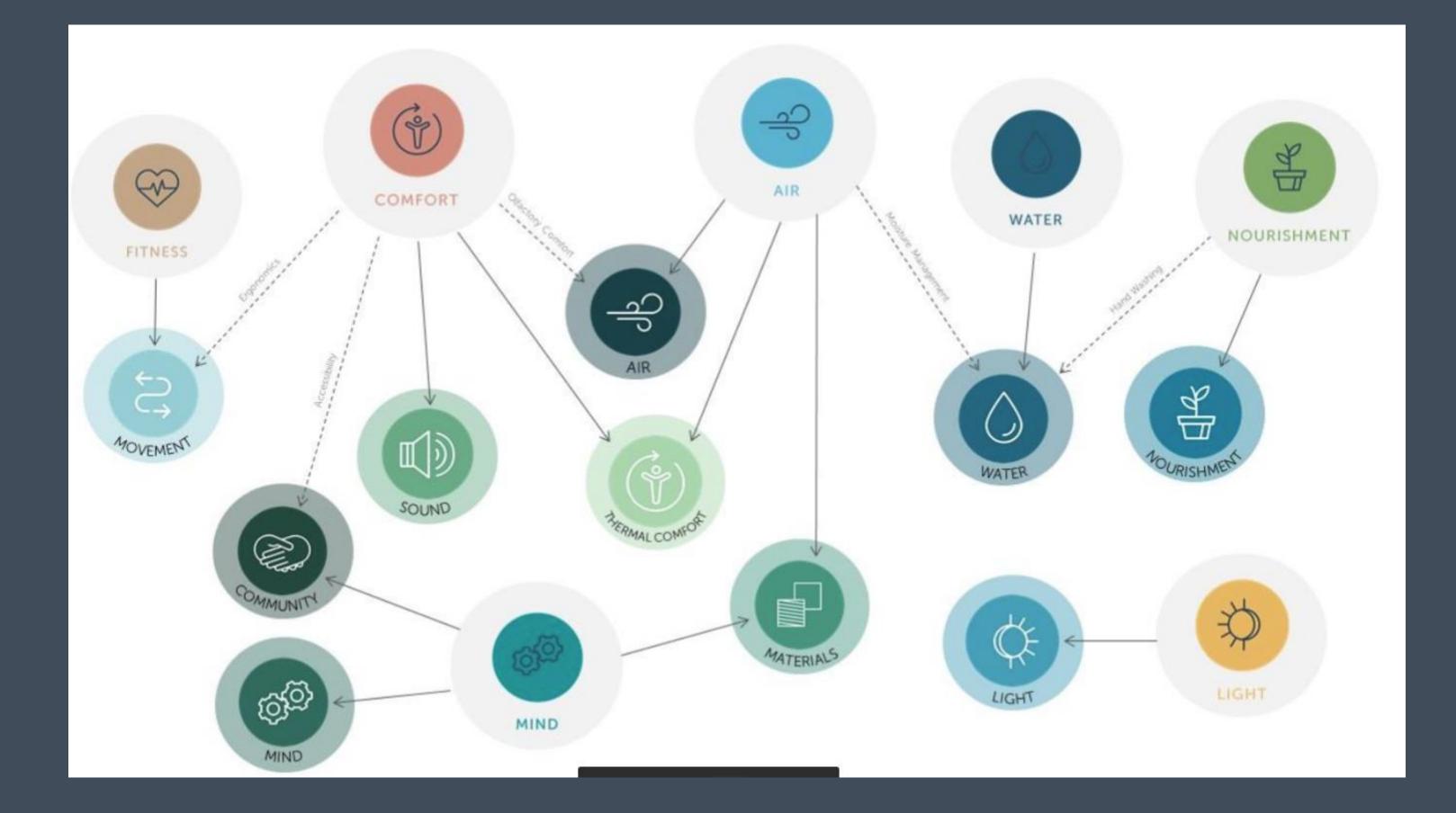

<u>MEET</u> GOALS AND EXPECTATIONS Building Performance as Teaching Tools

WATER SYSTEMS



PERFORMANCE DESIGN-ASSIST <u>MEET</u> GOALS AND EXPECTATIONS Building Performance as Teaching Tools LIGHTING AND DAYLIGHTING

Courtesy of: Spodak Dental

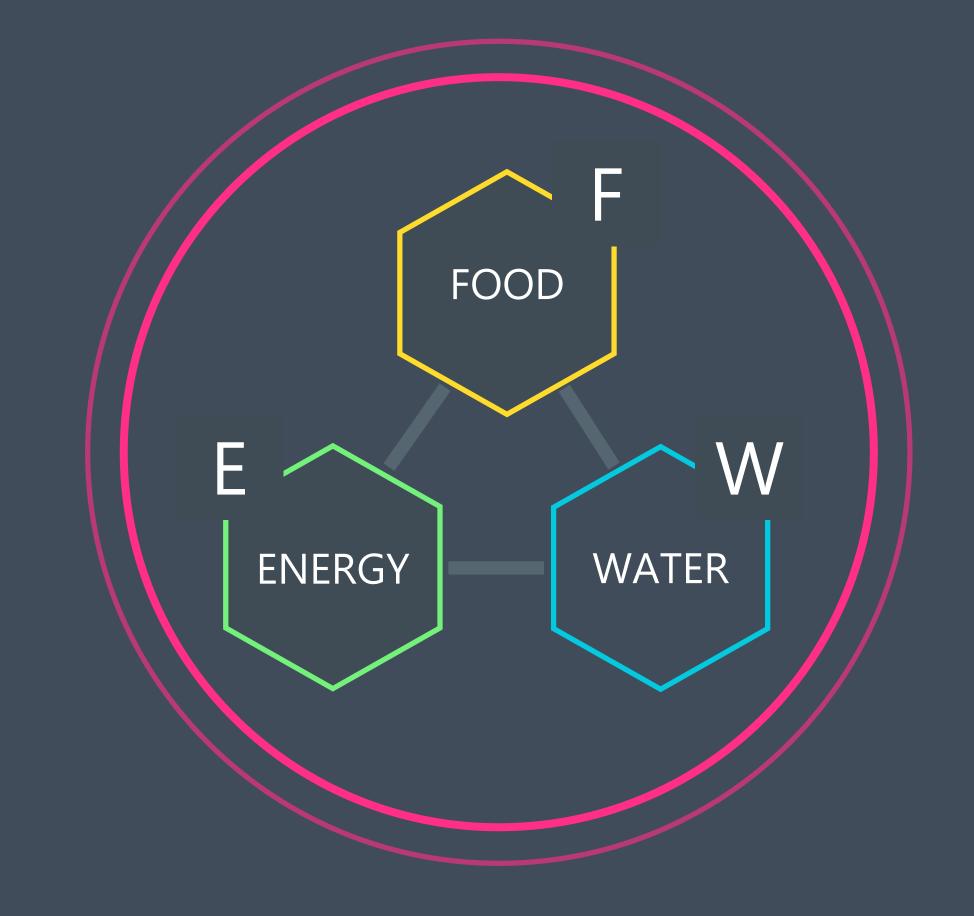


Northwest Lecture Hall @ 2nd Floor

Courtesy of: UF Rinker Hall

	 deep daylighting ceiling geometry
-	 daylighting bay
7	 vision bay w/ operable unit
	- blackout shade
	 deep daylighting ceiling geometry
	aluminum faced rotating louver w/ extruded
_	high performance glazing
	 levelor blind w/ shearview slats
	louver
	support rod
-	hinge plate
	daylighting louver in "up" position
-	daylighting louver in "down" position (for cleaning only)
_	

PERFORMANCE DESIGN-ASSIST <u>MEET</u> GOALS AND EXPECTATIONS Sustainability, Resilience and Wellness SYNERGIES AMONGST THE STRATEGIES

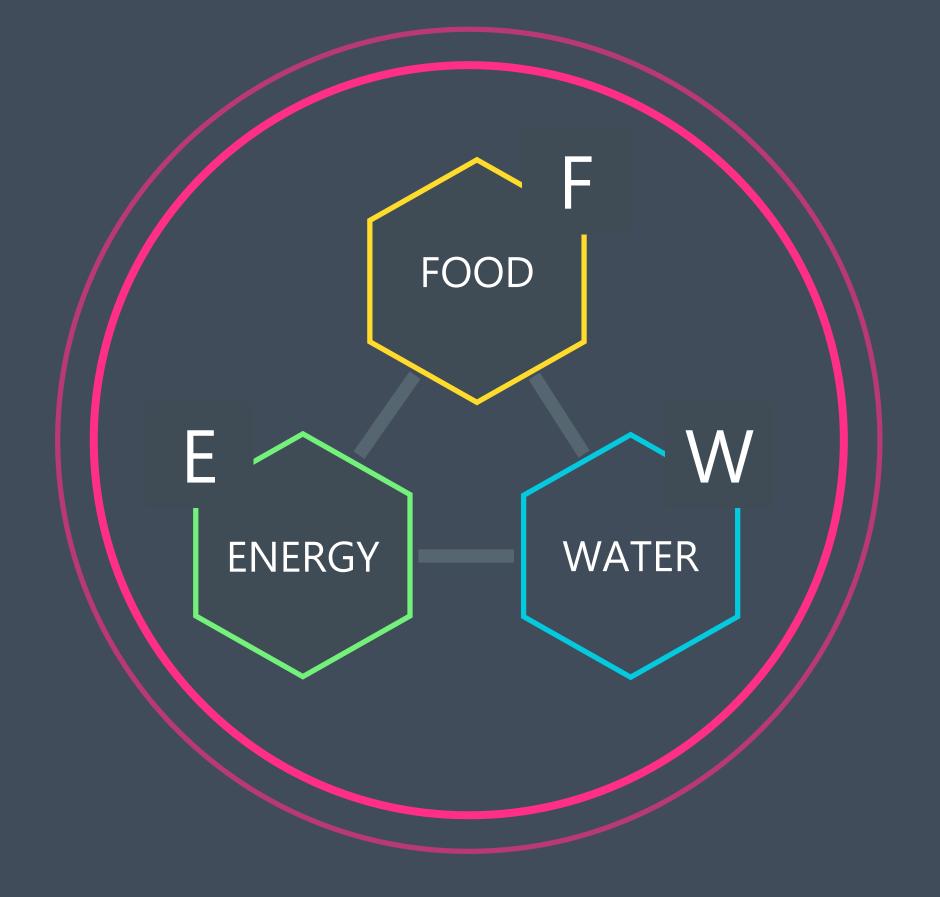


TALK ABOUT RESILIENCE In Design Phase

Think BEYOND THE STRUCTURE

Address **F.E.W.S**.

FOOD + ENERGY + WATER Systems

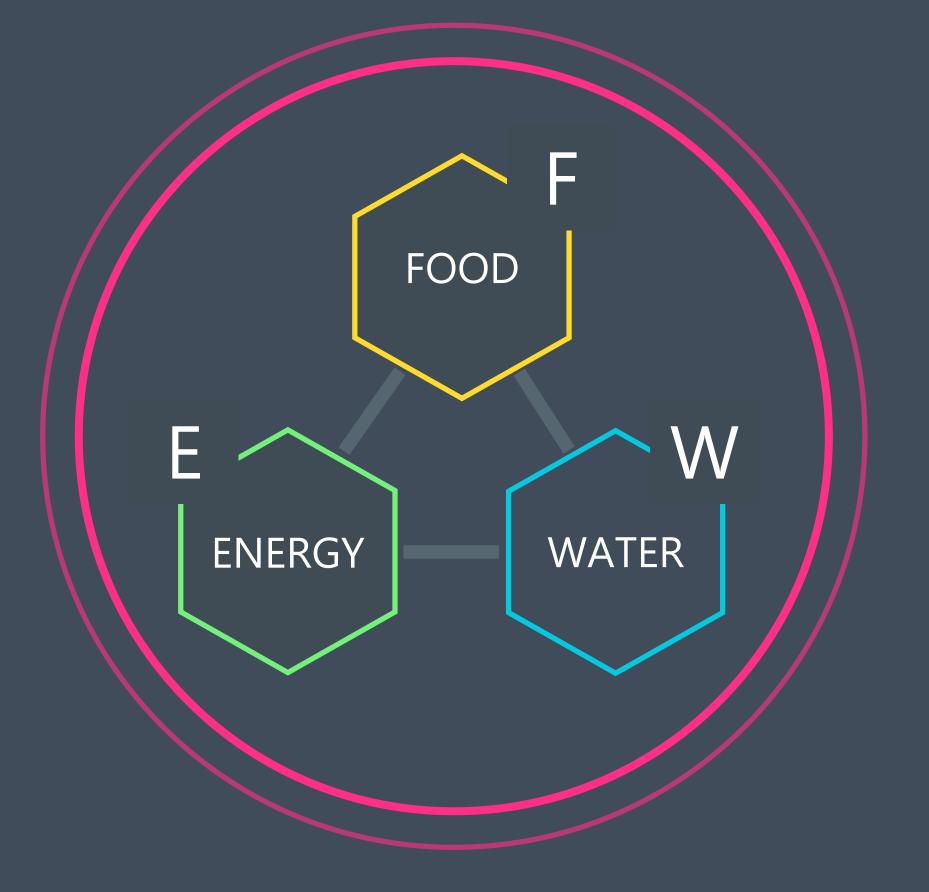

TALK ABOUT RESILIENCE In Design Phase

IMPACTS AND RISKS

Reasons for Concern:

- 1. Protection
- 2. Safety
- 3. Comfort

FOOD + ENERGY + WATER Systems


<u>TALK</u> ABOUT RESILIENCE In Design Phase

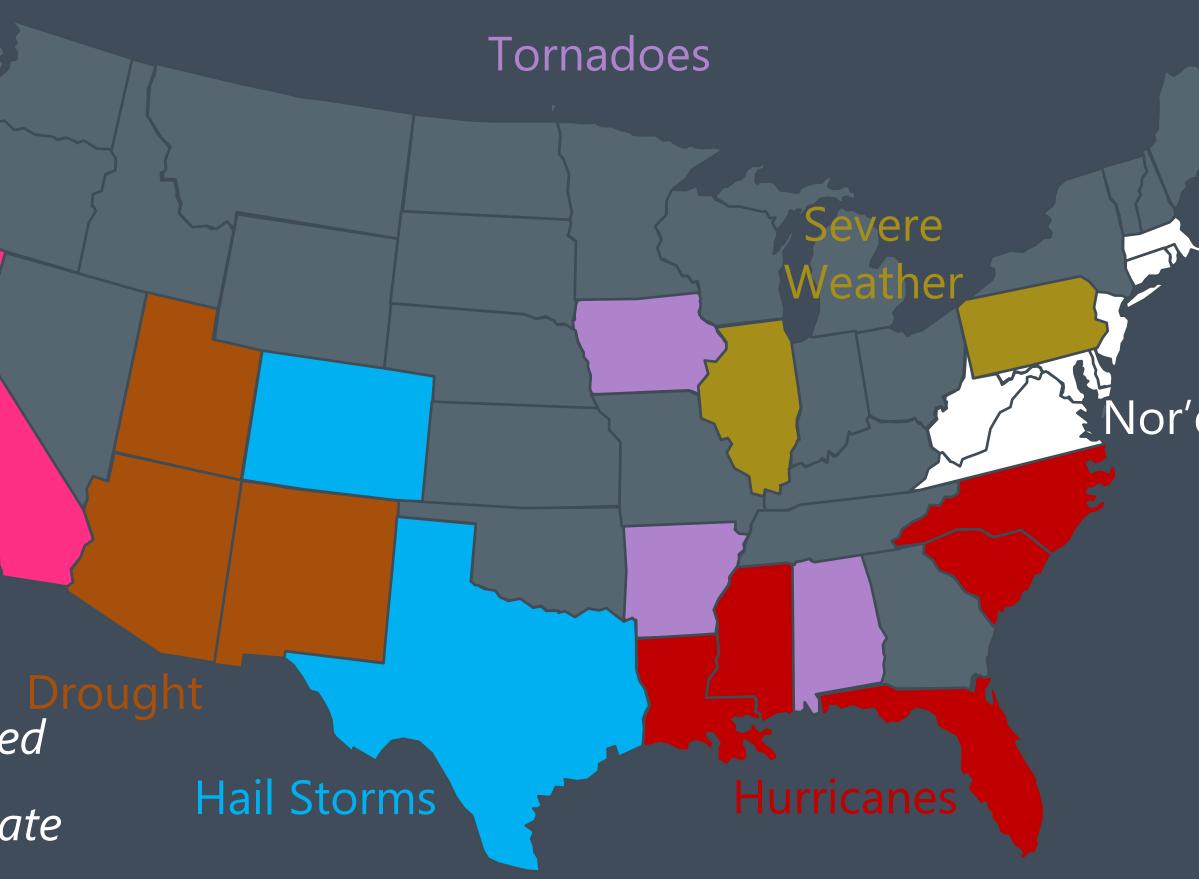
INTEGRATIVE DESIGN

Buildings are a system reliant on the interaction of other systematic parts.

The life and operation of a building depends on its collaboration with the surrounding environment and availability of resources.

A wholesome building design incorporates minimization of resources and maximization of efficiencies that improve the quality of the surrounding environment and community.

<u>TALK</u> ABOUT RESILIENCE In Design Phase


LOCAL ENVIRONMENT

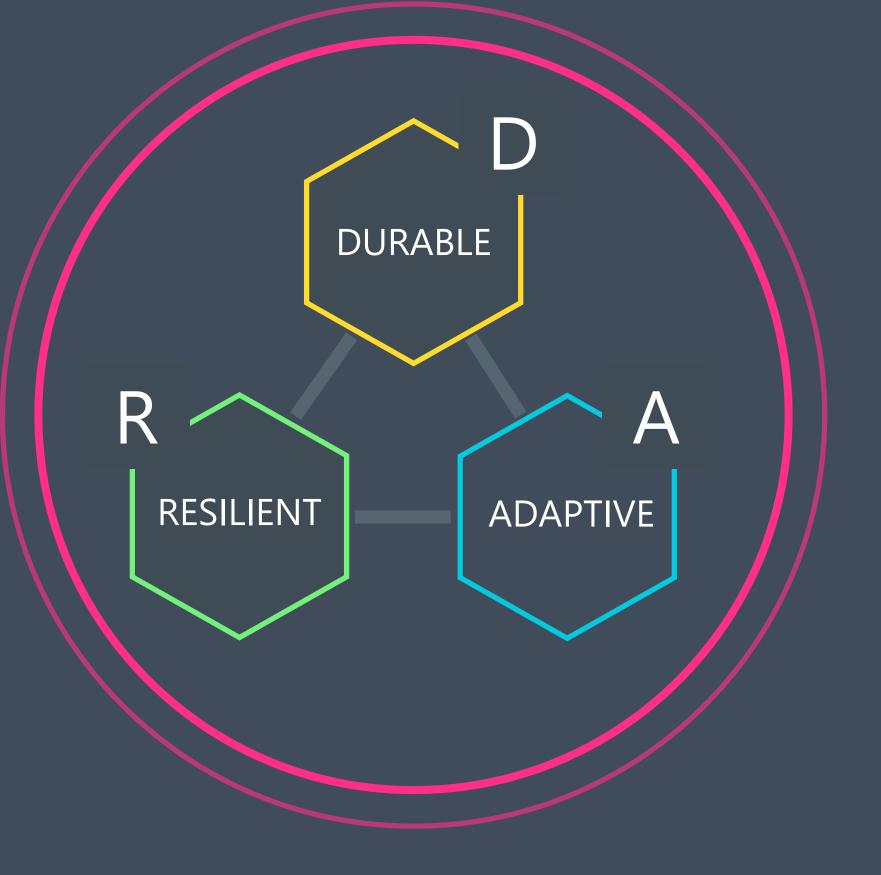
\$BILLION Impacts from natural hazards

IMPERATIVE OF RESILIENCE

Wildfires

DESIGN critical infrastructure to account for increased vulnerabilities such as natural DISASTERS or deliberate ATTACKS

<u>SET</u> GOALS AND EXPECTATIONS Building Resilience


RESILIENCE AND ADAPTATION

Natural and manmade hazardous events can impose a devastating cost upon society.

Stakeholders of civil infrastructure have a vested interest in reducing these costs by improving and maintaining operational and physical performance.

When planning and designing buildings, it is appropriate to try to mitigate the potential of the spiraling cost of operational failures by opting for more resilient performance through wellthought-out investments in better planning and designs.

<u>SET</u> GOALS AND EXPECTATIONS *Building Resilience*

RESILIENCE AND ADAPTATION

Robustness

Resourcefulness

Rapid recovery

Redundancy

EVOLVE away from <u>Code-Compliant</u> and <u>First Cost</u> <u>minimums</u> to release INNOVATION + PROTECTION

Image courtesy of Perkins + Will

<u>SET</u> GOALS AND EXPECTATIONS *Building Resilience*

RESILIENCE DESIGN CONCEPTS

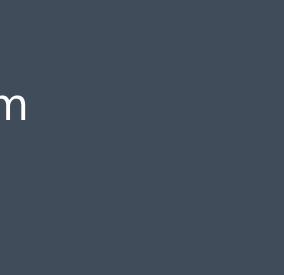
ADAPTATION in the face of challenges or threats is MONITORING and MEASURING to learn and decrease vulnerabilities to future disasters

PERSISTENCE of Systems, which can absorb change and disturbance

ABILITY of infrastructure systems to prevent and avoid hazards

ABILITY of infrastructure to lessen immediate damage caused by hazardous event, UTILIZING system redundancies

Image Courtesy of Arquitectonica

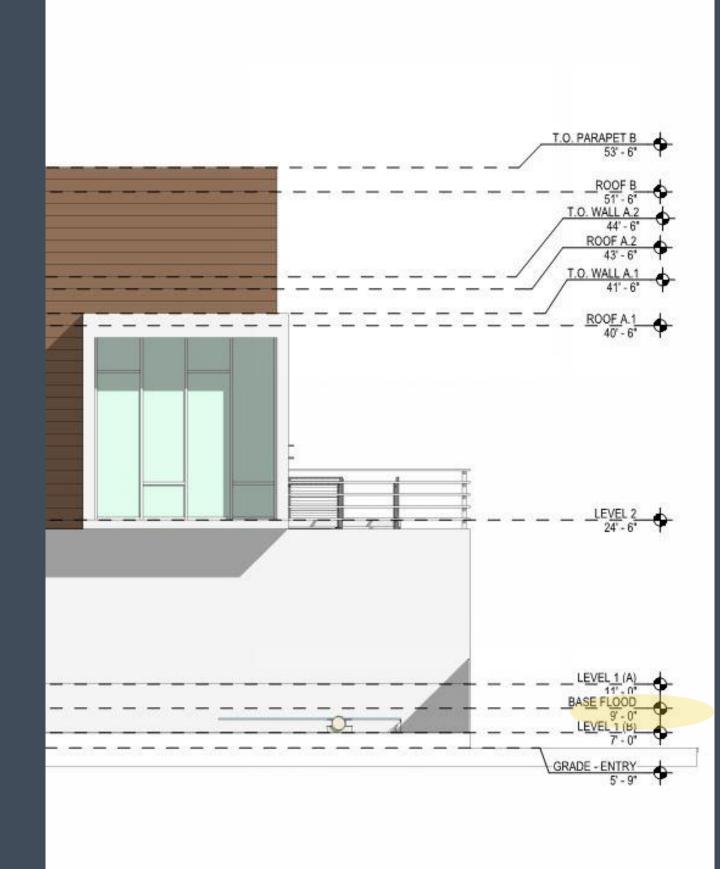

<u>SET</u> GOALS AND EXPECTATIONS *Building Resilience*

RESILIENCE DESIGN EXAMPLE

Located most of the Recreational building program on the second floor.

The ground floor FFE is 24" above base flood elevation except for the pool systems which will be protected by dry floodproofing methods.

The proposed lower pool deck elevation maintains the new pool deck.



<u>MEET</u> GOALS AND EXPECTATIONS *Building Resilience*

MANDATED CODE CHANGES

May increase resilience requirements to force ADOPTION and reduce LIFE-CYCLE Costs over time Still not rigorous enough

Resilience and Sustainability Strategies	Miami Beach	County/City of Miami 21	Broward County	Palm Beach County
LEED Certification	Х	Х		
Vulnerability Assessment	Х	Х		X
Sea Level Rise	Х	Х	Х	
Carbon Emissions Reduction	Х	Х		
Stormwater Management	Х	Х	Х	
Flood Modeling improvements	Х	Х		
Habitat protection and restoration	Х	Х		
Infrastructure improvements - roadways, drainage	Х	Х	Х	
Hazard ID and Mitigation Planning	Х	Х		x
Zoning and Regulations amendments	X	Х	Х	Х

MEET GOALS AND EXPECTATIONS Building Resilience

THANK YOU For Participating

We will provide a Certificate of Completion to you via email.

Jeffrey Conley – Managing Principal jconley@sequil.com

- Please be sure to use the sign-in sheet and provide AIA Number and email.
- Participant attendance will be reported to AIA by SEQUIL Systems Inc.

Heather Appell – Director, Sustainability happell@sequil.com

www.sequil.com 561-921-0900